10,906 research outputs found
Potts-Percolation-Gauss Model of a Solid
We study a statistical mechanics model of a solid. Neighboring atoms are
connected by Hookian springs. If the energy is larger than a threshold the
"spring" is more likely to fail, while if the energy is lower than the
threshold the spring is more likely to be alive. The phase diagram and
thermodynamic quantities, such as free energy, numbers of bonds and clusters,
and their fluctuations, are determined using renormalization-group and
Monte-Carlo techniques.Comment: 10 pages, 12 figure
Global Management Effectiveness Study: Integrated Social and Ecological Report for Non-node and Node Sites
The purpose of this study is to provide a critical assessment of the implementation, impact, and performance of Marine Managed Area (MMA) projects to serve as a basis for improved planning and implementation of new MMA projects worldwide. The specific objectives of the study are (1) to determine the socioeconomic, governance and ecological effects of MMAs; (2) to determine the critical factors influencing MMA effects, as well as the impact of the timing of those factors on the effects of the MMA; and (3) to provide tools for predicting MMA effects based on ecological, socioeconomic and governance variable
Study of combustion experiments in space
The physical bases and scientific merits were examined of combustion experimentation in a space environment. For a very broad range of fundamental combustion problems, extensive and systematic experimentation at reduced gravitational levels (0 g 1) are viewed as essential to the development of needed observations and related theoretical understanding
V-V Bond-Length Fluctuations in Vox
We report a significantly stronger suppression of the phonon contribution to
the thermal conductivity in VOx than can be accounted for by disorder of the 16
% atomic vacancies present in VO. Since the transition from localized to
itinerant electronic behavior is first-order and has been shown to be
characterized by bond-length fluctuations in several transition-metal oxides
with the perovskite structure, we propose that cooperative V-V bond-length
fluctuations play a role in VO similar to the M-O bond-length fluctuations in
the perovskites. This model is able to account for the strong suppression of
the thermal conductivity, the existence of a pseudogap confirmed by
thermoelectric power, an anomalously large Debye-Waller factor, the temperature
dependence of the magnetic susceptibility, and the inability to order atomic
vacancies in VO.Comment: 5 pages, 5 figure
Ultraviolet absorption: Experiment MA-059
A technique devised to permit the measurement of atmospheric species concentrations is described. This technique involves the application of atomic absorption spectroscopy and the quantitative observation of resonance fluorescence in which atomic or molecular species scatter resonance radiation from a light source into a detector. A beam of atomic oxygen and atomic nitrogen resonance radiation, strong unabsorbable oxygen and nitrogen radiation, and visual radiation was sent from Apollo to Soyuz. The density of atomic oxygen and atomic nitrogen between the two spacecraft was measured by observing the amount of resonance radiation absorbed when the line joining Apollo and Soyuz was perpendicular to their velocity with respect to the ambient atmosphere. Results of postflight analysis of the resonance fluorescence data are discussed
Fragmentation of Nuclei at Intermediate and High Energies in Modified Cascade Model
The process of nuclear multifragmentation has been implemented, together with
evaporation and fission channels of the disintegration of excited remnants in
nucleus-nucleus collisions using percolation theory and the intranuclear
cascade model. Colliding nuclei are treated as face--centered--cubic lattices
with nucleons occupying the nodes of the lattice. The site--bond percolation
model is used. The code can be applied for calculation of the fragmentation of
nuclei in spallation and multifragmentation reactions.Comment: 19 pages, 10 figure
Cooperativity in binding processes: New insights from phenomenological modeling
Cooperative binding is one of the most interesting and not fully understood phenomena involved in control and regulation of biological processes. Here we analyze the simplest phenomenological model that can account for cooperativity (i.e. ligand binding to a macromolecule with two binding sites) by generating equilibrium binding isotherms from deterministically simulated binding time courses. We show that the Hill coefficients determined for cooperative binding, provide a good measure of the Gibbs free energy of interaction among binding sites, and that their values are independent of the free energy of association for empty sites. We also conclude that although negative cooperativity and different classes of binding sites cannot be distinguished at equilibrium, they can be kinetically differentiated. This feature highlights the usefulness of pre-equilibrium time-resolved strategies to explore binding models as a key complement of equilibrium experiments. Furthermore, our analysis shows that under conditions of strong negative cooperativity, the existence of some binding sites can be overlooked, and experiments at very high ligand concentrations can be a valuable tool to unmask such sites.Instituto de Física de Líquidos y Sistemas BiológicosFacultad de Ciencias Exacta
Chemical kinetic and photochemical data for use in stratospheric modelling
An evaluated set of rate constants and photochemical cross sections were compiled for use in modelling stratospheric processes. The data are primarily relevant to the ozone layer, and its possible perturbation by anthropogenic activities. The evaluation is current to, approximately, January, 1979
- …