210 research outputs found

    Millikelvin magnetic relaxation measurements of alpha-Fe2O3 antiferromagnetic particles

    Full text link
    In this paper we report magnetic relaxation data for antiferromagnetic alpha-Fe2O3 particles of 5 nm mean diameter in the temperature range 0.1 K to 25 K. The average spin value of these particles S=124 and the uniaxial anisotropy constant D=1.6x10^-2 K have been estimated from the experimental values of the blocking temperature and anisotropy field. The observed plateau in the magnetic viscosity from 3 K down to 100 mK agrees with the occurrence of spin tunneling from the ground state Sz = S. However, the scaling M vs Tln(nu t) is broken below 5 K, suggesting the occurrence of tunneling from excited states below this temperature.Comment: 4 pages (two columns), 4 figure

    Enhancement of the magnetic anisotropy of nanometer-sized Co clusters: influence of the surface and of the inter-particle interactions

    Full text link
    We study the magnetic properties of spherical Co clusters with diameters between 0.8 nm and 5.4 nm (25 to 7500$ atoms) prepared by sequential sputtering of Co and Al2O3. The particle size distribution has been determined from the equilibrium susceptibility and magnetization data and it is compared to previous structural characterizations. The distribution of activation energies was independently obtained from a scaling plot of the ac susceptibility. Combining these two distributions we have accurately determined the effective anisotropy constant Keff. We find that Keff is enhanced with respect to the bulk value and that it is dominated by a strong anisotropy induced at the surface of the clusters. Interactions between the magnetic moments of adjacent layers are shown to increase the effective activation energy barrier for the reversal of the magnetic moments. Finally, this reversal is shown to proceed classically down to the lowest temperature investigated (1.8 K).Comment: 13 figures submitted to Phys. Rev.

    Digital Work Design

    Get PDF
    Erworben im Rahmen der Schweizer Nationallizenzen (http://www.nationallizenzen.ch)More and more academic studies and practitioner reports claim that human work is increasingly disrupted or even determined by information and communication technology (ICT) (Cascio and Montealegre 2016). This will make a considerable share of jobs currently performed by humans susceptible to automation (e.g., Frey and Osborne 2017; Manyika et al. 2017). These reports often sketch a picture of ‘machines taking over’ traditional domains like manufacturing, while ICT advances and capabilities seem to decide companies’ fate. Consequently, ICT is often put at the core of innovative efforts. While this applies to nearly all areas of workplace design, a recent popular example of increasing technology centricity is ‘Industry 4.0’, which is often delineated as ‘machines talking to computers’

    Supporting place-specific interaction through a physical/digital assembly

    Get PDF
    This article examines visitor interactions with and through a physical/digital installation designed for an open-air museum that displays historic buildings and ways of life from the past. The installation was designed following the “Assembly” design scheme proposed by Fraser et al. (2003), and centred around five principles for the design of interactive experiences. We discuss how the Assembly framework was adapted and applied to our work on the installation called Reminisce, and we then present qualitative data gathered through the shadowing and naturalistic observations of small groups of visitors using Reminisce during their exploration of the museum. Through these data excerpts we illustrate how interaction occurred among visitors and with the assembly. We reflect on the guiding principles of the adapted Assembly framework and on their usefulness for the design of place-specific interactional opportunities in heritage settings. Results from the empirical study show that the adapted Assembly principles provide HCI researchers and designers with ways in which to flexibly support collocated interactions at heritage sites across artefacts and locations in ways that both complement and enrich the physical setting of the visit and its character

    Results from the CERN pilot CLOUD experiment

    Get PDF
    During a 4-week run in October–November 2006, a pilot experiment was performed at the CERN Proton Synchrotron in preparation for the Cosmics Leaving OUtdoor Droplets (CLOUD) experiment, whose aim is to study the possible influence of cosmic rays on clouds. The purpose of the pilot experiment was firstly to carry out exploratory measurements of the effect of ionising particle radiation on aerosol formation from trace H2SO4 vapour and secondly to provide technical input for the CLOUD design. A total of 44 nucleation bursts were produced and recorded, with formation rates of particles above the 3 nm detection threshold of between 0.1 and 100 cm -3 s -1, and growth rates between 2 and 37 nm h -1. The corresponding H2O concentrations were typically around 106 cm -3 or less. The experimentally-measured formation rates and htwosofour concentrations are comparable to those found in the atmosphere, supporting the idea that sulphuric acid is involved in the nucleation of atmospheric aerosols. However, sulphuric acid alone is not able to explain the observed rapid growth rates, which suggests the presence of additional trace vapours in the aerosol chamber, whose identity is unknown. By analysing the charged fraction, a few of the aerosol bursts appear to have a contribution from ion-induced nucleation and ion-ion recombination to form neutral clusters. Some indications were also found for the accelerator beam timing and intensity to influence the aerosol particle formation rate at the highest experimental SO2 concentrations of 6 ppb, although none was found at lower concentrations. Overall, the exploratory measurements provide suggestive evidence for ion-induced nucleation or ion-ion recombination as sources of aerosol particles. However in order to quantify the conditions under which ion processes become significant, improvements are needed in controlling the experimental variables and in the reproducibility of the experiments. Finally, concerning technical aspects, the most important lessons for the CLOUD design include the stringent requirement of internal cleanliness of the aerosol chamber, as well as maintenance of extremely stable temperatures (variations below 0.1 °C

    Prevalence of Coxielle Burnetii anbitodies in Danish Dairy herds

    Get PDF
    <p>Abstract</p> <p>During recent years in Denmark higher rates of antibodies to <it>Coxiella burnetii </it>have been detected in animals and humans than previously reported. A study based on bulk tank milk samples from 100 randomly selected dairy herds was performed to estimate the prevalence and geographical distribution of antibody positive dairy herds. Using the CHEKIT Q-Fever Antibody ELISA Test Kit (IDEXX), the study demonstrated a prevalence of 59% antibody positive herds, 11% antibody intermediate herds and 30% antibody negative herds based on the instructions provided by the manufacturer. The geographical distribution does not indicate a relationship between the regional density of dairy farms and the prevalence of antibody positive dairy farms. The result supports the hypothesis of an increase in the prevalence of positive dairy herds compared to previous years.</p

    Development of a Precision Medicine Workflow in Hematological Cancers, Aalborg University Hospital, Denmark

    Get PDF
    Within recent years, many precision cancer medicine initiatives have been developed. Most of these have focused on solid cancers, while the potential of precision medicine for patients with hematological malignancies, especially in the relapse situation, are less elucidated. Here, we present a demographic unbiased and observational prospective study at Aalborg University Hospital Denmark, referral site for 10% of the Danish population. We developed a hematological precision medicine workflow based on sequencing analysis of whole exome tumor DNA and RNA. All steps involved are outlined in detail, illustrating how the developed workflow can provide relevant molecular information to multidisciplinary teams. A group of 174 hematological patients with progressive disease or relapse was included in a non-interventional and population-based study, of which 92 patient samples were sequenced. Based on analysis of small nucleotide variants, copy number variants, and fusion transcripts, we found variants with potential and strong clinical relevance in 62% and 9.5% of the patients, respectively. The most frequently mutated genes in individual disease entities were in concordance with previous studies. We did not find tumor mutational burden or micro satellite instability to be informative in our hematologic patient cohort
    corecore