43 research outputs found

    Induction of viral and tumour specific CTL responses using antibody targeted HLA class I peptide complexes

    Get PDF
    The production of cytotoxic T cells with specificity for cancer cells is a rapidly evolving branch of cancer therapeutics. A variety of approaches aim to amplify anti-tumour cytotoxic T cell responses using purified peptides, tumour cell lysates or recombinant HLA/peptide complexes in differing antigen presenting systems. Using a two-step biotin-streptavidin antibody targeting system, recombinant HLA-class I/peptide complexes were attached to the surface of B cells via the anti-CD20 B9E9-scFvSA antibody-streptavidin fusion protein. Flow cytometry with a conformation dependant monoclonal antibody to HLA class I indicated that targeted HLA-class I/peptide complexes remain on the surface of B cells in culture for periods in excess of 72 h. PBMCs were stimulated in vitro for 8–14 days using the autologous B cells as antigen presenting cells. Following a single cycle of stimulation specific cytotoxic T cell responses to targeted HLA-A2 complexes containing the M1, BMLF1 and Melan A peptides could be demonstrated by tetramer staining and Cr release assays. With the HLA-A2/BMLF1 complex up to 2.99% of CD8+ve cells were tetramer positive producing 20% lysis (E : T 10 : 1) of CIR-A2 target cells in an in vitro cytotoxicity assay compared to baseline levels of 0.09% tetramer +ve and 2% lysis in the unstimulated population. PBMCs from a healthy donor treated with two cycles of stimulations with targeted HLA-A2/Melan A complexes, demonstrated expansion of the melanA tetramer +ve population from 0.03% to 1.4% producing 15% lysis of Melan A pulsed target cells. With further consideration to the key variables of HLA/peptide complex density, the ratio of stimulator to effector cells and optimum cytokine support, this system should offer an easy and effective method for the in vitro amplification of specific cytotoxic T cell responses and warrants development for the in vivo induction of cytotoxic T cell responses in cancer therapy

    Immune Modulation by Adjuvants Combined with Diphtheria Toxoid Administered Topically in BALB/c Mice After Microneedle Array Pretreatment

    Get PDF
    Purpose. In this study, modulation of the immune response against diphtheria toxoid (DT) by various adjuvants in transcutaneous immunization (TCI) with microneedle array pretreatment was investigated. Methods. TCI was performed on BALB/c mice with or without microneedle array pretreatment using DT as a model antigen co-administrated with lipopolysaccharide (LPS), Quil A, CpG oligo deoxynucleotide (CpG) or cholera toxin (CT) as adjuvant. The immunogenicity was evaluated by measuring serum IgG subtype titers and neutralizing antibody titers. Results. TCI with microneedle array pretreatment resulted in a 1,000-fold increase of DT-specific serum IgG levels as compared to TCI. The immune response was further improved by co-administration of adjuvants, showing a progressive increase in serum IgG titers when adjuvanted with LPS, Quil A, CpG and CT. IgG titers of the CT-adjuvanted group reached levels comparable to those obtained after DTalum subcutaneous injection. The IgG1/IgG2a ratio of DT-specific antibodies decreased in the following sequence: plain DT, Quil A, CT and CpG, suggesting that the immune response was skewed towards the Th1 direction. Conclusions. The potency and the quality of the immune response against DT administered by microneedle array mediated TCI can be modulated by co-administration of adjuvants. KEY WORDS: cholera toxin; CpG; diphtheria toxoid; microneedle array; transcutaneous immunization

    Immunization with Radiation-Attenuated Plasmodium berghei Sporozoites Induces Liver cCD8α+DC that Activate CD8+T Cells against Liver-Stage Malaria

    Get PDF
    Immunization with radiation (γ)-attenuated Plasmodia sporozoites (γ-spz) confers sterile and long-lasting immunity against malaria liver-stage infection. In the P. berghei γ-spz model, protection is linked to liver CD8+ T cells that express an effector/memory (TEM) phenotype, (CD44hiCD45RBloCD62Llo ), and produce IFN-γ. However, neither the antigen presenting cells (APC) that activate these CD8+ TEM cells nor the site of their induction have been fully investigated. Because conventional (c)CD8α+ DC (a subset of CD11c+ DC) are considered the major inducers of CD8+ T cells, in this study we focused primarily on cCD8α+ DC from livers of mice immunized with Pb γ-spz and asked whether the cCD8α+ DC might be involved in the activation of CD8+ TEM cells. We demonstrate that multiple exposures of mice to Pb γ-spz lead to a progressive and nearly concurrent accumulation in the liver but not the spleen of both the CD11c+NK1.1− DC and CD8+ TEM cells. Upon adoptive transfer, liver CD11c+NK1.1− DC from Pb γ-spz-immunized mice induced protective immunity against sporozoite challenge. Moreover, in an in vitro system, liver cCD8α+ DC induced naïve CD8+ T cells to express the CD8+ TEM phenotype and to secrete IFN-γ. The in vitro induction of functional CD8+ TEM cells by cCD8α+ DC was inhibited by anti-MHC class I and anti-IL-12 mAbs. These data suggest that liver cCD8α+ DC present liver-stage antigens to activate CD8+ TEM cells, the pre-eminent effectors against pre-erythrocytic malaria. These results provide important implications towards a design of anti-malaria vaccines

    B cell and T cell immunity in the female genital tract: Potential of distinct mucosal routes of vaccination and role of tissue-associated dendritic cells and natural killer cells

    Get PDF
    International audienceClin Microbiol Infect 2012; 18 (Suppl. 5): 1-6 ABSTRACT: The female genital mucosa constitutes the major port of entry of sexually transmitted infections. Most genital microbial pathogens represent an enormous challenge for developing vaccines that can induce genital immunity that will prevent their transmission. It is now established that long-lasting protective immunity at mucosal surfaces has to involve local B-cell and T-cell effectors as well as local memory cells. Mucosal immunization constitutes an attractive way to generate systemic and genital B-cell and T-cell immune responses that can control early infection by sexually transmitted pathogens. Nevertheless, no mucosal vaccines against sexually transmitted infections are approved for human use. The mucosa-associated immune system is highly compartmentalized and the selection of any particular route or combinations of routes of immunization is critical when defining vaccine strategies against genital infections. Furthermore, mucosal surfaces are complex immunocompetent tissues that comprise antigen-presenting cells and also innate immune effectors and non-immune cells that can act as 'natural adjuvants' or negative immune modulators. The functions of these cells have to be taken into account when designing tissue-specific antigen-delivery systems and adjuvants. Here, we will discuss data that compare different mucosal routes of immunization to generate B-cell and T-cell responses in the genital tract, with a special emphasis on the newly described sublingual route of immunization. We will also summarize data on the understanding of the effector and induction mechanisms of genital immunity that may influence the development of vaccine strategies against genital infections

    Langerhans Cells Prime IL-17-Producing T Cells and Dampen Genital Cytotoxic Responses following Mucosal Immunization

    No full text
    International audienceLangerhans cells (LCs) are dendritic cells (DCs) localized in stratified epithelia, such as those overlaying skin, buccal mucosa, and vagina. The contribution of LCs to the promotion or control of immunity initiated at epithelial sites remains debated. We report in this paper that an immunogen comprising OVA linked to the B subunit of cholera toxin, used as delivery vector, was efficient to generate CTLs after vaginal immunization. Using Lang-EGFP mice, we evaluated the contribution of distinct DC subsets to the generation of CD4 and CD8 T cell responses. We demonstrate that the vaginal epithelium, unlike the skin epidermis, includes a minor population of LCs and a major subset of langerin(-) DCs. Intravaginally administered Ag is taken up by LCs and langerin(-) DCs and carried up to draining lymph nodes, where both subsets prime CD8 T cells, unlike blood-derived DCs, although with distinct capabilities. LCs prime CD8 T cells with a cytokine profile dominated by IL-17, whereas Lang(-) DCs induce IFN-gamma-producing T cells. Using Lang-DTR-EGFP mice to ensure a transient ablation of LCs, we found that these cells not only are dispensable for the generation of genital CTL responses but also downregulate these responses, by a mechanism that may involve IL-10 and IL-17 cytokines. This finding has implications for the development of mucosal vaccines and immunotherapeutic strategies designed for the targeting of DCs

    Impact of Tenascin-C on Radiotherapy in a Novel Syngeneic Oral Squamous Cell Carcinoma Model With Spontaneous Dissemination to the Lymph Nodes

    No full text
    Radiotherapy, the most frequent treatment of oral squamous cell carcinomas (OSCC) besides surgery is employed to kill tumor cells but, radiotherapy may also promote tumor relapse where the immune-suppressive tumor microenvironment (TME) could be instrumental. We established a novel syngeneic grafting model from a carcinogen-induced tongue tumor, OSCC13, to address the impact of radiotherapy on OSCC. This model revealed similarities with human OSCC, recapitulating carcinogen-induced mutations found in smoking associated human tongue tumors, abundant tumor infiltrating leukocytes (TIL) and, spontaneous tumor cell dissemination to the local lymph nodes. Cultured OSCC13 cells and OSCC13-derived tongue tumors were sensitive to irradiation. At the chosen dose of 2 Gy mimicking treatment of human OSCC patients not all tumor cells were killed allowing to investigate effects on the TME. By investigating expression of the extracellular matrix molecule tenascin-C (TNC), an indicator of an immune suppressive TME, we observed high local TNC expression and TIL infiltration in the irradiated tumors. In a TNC knockout host the TME appeared less immune suppressive with a tendency towards more tumor regression than in WT conditions. Altogether, our novel syngeneic tongue OSCC grafting model, sharing important features with the human OSCC disease could be relevant for future anti-cancer targeting of OSCC by radiotherapy and other therapeutic approaches
    corecore