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Abstract

The female genital mucosa constitutes the major port of entry of sexually transmitted infections. Most genital microbial pathogens rep-

resent an enormous challenge for developing vaccines that can induce genital immunity that will prevent their transmission. It is now

established that long-lasting protective immunity at mucosal surfaces has to involve local B-cell and T-cell effectors as well as local mem-

ory cells. Mucosal immunization constitutes an attractive way to generate systemic and genital B-cell and T-cell immune responses that

can control early infection by sexually transmitted pathogens. Nevertheless, no mucosal vaccines against sexually transmitted infections

are approved for human use. The mucosa-associated immune system is highly compartmentalized and the selection of any particular

route or combinations of routes of immunization is critical when defining vaccine strategies against genital infections. Furthermore,

mucosal surfaces are complex immunocompetent tissues that comprise antigen-presenting cells and also innate immune effectors and

non-immune cells that can act as ‘natural adjuvants’ or negative immune modulators. The functions of these cells have to be taken into

account when designing tissue-specific antigen-delivery systems and adjuvants. Here, we will discuss data that compare different mucosal

routes of immunization to generate B-cell and T-cell responses in the genital tract, with a special emphasis on the newly described sub-

lingual route of immunization. We will also summarize data on the understanding of the effector and induction mechanisms of genital

immunity that may influence the development of vaccine strategies against genital infections.
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Introduction

The female genital tract consists of the upper reproductive

tract (uterus and cervix) and the lower reproductive tract

(vagina). It constitutes the major port of entry of several

pathogens such as human immunodeficiency virus (HIV),

herpes simplex virus (HSV), human papillomavirus, Chlamydia

and Neisseria gonorrhoeae. These sexually transmitted

infections (STI) represent a major public health problem in

both industrialized and developing countries. Hence, develop-

ment of vaccines that can induce a strong genital immunity pre-

venting STI transmission is crucial but challenging. Indeed,

despite numerous efforts, the sole human vaccines licensed to

prevent an STI until now are the human papillomavirus vac-

cines Gardasil� and Cervarix�. These prophylactic vaccines

that are given by intramuscular injection are believed to confer

protection by inducing genital neutralizing antibodies derived
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from the circulation [1–3]. For other pathogens, in particular

HIV and HSV-2, a protective immunity has to elicit strong B-

cell and T-cell responses both at the site of infection and in the

periphery to block systemic spreading [4–6]. Ideally, a vaccine

against genital infection should induce genital and systemic

immune responses involving effector B-cell, CD4 and CD8 T-

cell responses as well as local B and T memory cells.

The mucosa-associated immune system is highly compart-

mentalized. Mucosal immunization, unlike parenteral immuni-

zation, is able to favour the generation of secretory

antibodies (IgA) and CD4 and CD8 T cells both at the site

of mucosal immunization and in distant mucosae under cer-

tain conditions [7,8]. Interestingly, Gallichan and Rosenthal

demonstrated that mucosal immunization generates mucosal

long-term CD8 T cells, in contrast to parenteral immuniza-

tion, and that these tissue-associated memory T cells are

critical for antiviral protection against mucosal challenge [9].

Hence, characterizing the phenotype of long-term tissue-

associated effector immune cells in the genital mucosa and

identifying the cellular and molecular mechanisms that induce

their generation and their specific homing in the genital tract

are of particular interest for development of vaccines against

STI. Moreover, the generation of efficient mucosal and sys-

temic immune responses following mucosal immunization

requires the use of appropriate adjuvants and antigen-deliv-

ery systems [10–12]. These vaccine components will influ-

ence the quality and the nature of the immunity needed at a

desired site of the body.

Therefore, the design of vaccines against STI must take

into account the routes of immunization as well as the nat-

ure of the components of the vaccines themselves. A major

question to be answered is where and how a vaccine against

an STI has to be delivered to generate a robust and tissue-

specific long-lasting immunity in the female genital tract. In

this review, we will summarize data that compare different

mucosal routes of immunization to generate B-cell and T-cell

responses in the genital tract, with a special emphasis on the

newly described sublingual route of immunization. We will

also discuss data available on effector and induction mecha-

nisms of mucosal immunity that may influence the develop-

ment of vaccine strategies against genital infections.

Routes of Immunization and B-cell and

T-cell Immunity in the Female Genital Tract

Comparison of mucosal and parenteral routes of

immunization

Numerous studies have compared the potential of different

mucosal routes of immunization to generate IgG and IgA

antibody responses in the human and mouse cervico-vaginal

mucosae after topical application of non-replicating vaccines

as reviewed elsewhere [11]. Vaginal immunization was shown

to induce IgA and IgG antibody-secreting cells in vagina and

uterus as well as cervico-vaginal and seric antibodies [13–

15]. Furthermore, nasal immunization gave rise to IgA and

IgG antibody responses in human cervico-vaginal washes with

intensities comparable to those seen following vaginal immu-

nization [14]. Several studies comparing different routes of

immunization with replicating or non-replicating model anti-

gens in mice have also documented that nasal immunization

can induce IgA and IgG antibodies as well as effector T cells

in the genital tract [15–17]. The potential of the sublingual

route for delivering vaccines has gained interest because it

favours the induction of broadly disseminated mucosal and

systemic immune responses [18,19]. Notably, sublingual

immunization was as potent as vaginal immunization for the

induction of IgA and IgG antibodies and cytotoxic T cells in

the female genital tract, in contrast to parenteral immuniza-

tion [15,20]. Furthermore, sublingual immunization with

human papillomavirus-like particles evoked virus-neutralizing

antibody responses in both serum and cervico-vaginal

washes, and provided protection against genital challenge

with human papillomavirus pseudovirions [15]. In addition,

sublingual immunization of female macaques with an HIV sub-

unit vaccine induced IgG and IgA antibody responses in the

genital tract (F. Anjuère, unpublished results). It should also

be noted that the sublingual route of immunization reduces

the risk that antigens and adjuvants are redirected to the

olfactory bulb epithelium, as observed after intranasal vacci-

nation. Altogether, these studies suggest that this novel

route of immunization may constitute an interesting alterna-

tive route to intranasal immunization for human vaccination

against urogenital infections.

Combination of routes of immunization

Recent studies indicated that a prime-boost strategy com-

prising a mucosal prime followed by an intramuscular boost

immunization was beneficial to generate protective immunity

either in macaques against a challenge by simian HIV [21] or

in mice against Chlamydia genital shedding [22]. In both stud-

ies, the mucosal immunization (intranasal or sublingual) was

able to induce a protective immunity in combination with an

intramuscular immunization whereas parenteral immunization

alone was not. Another recent study in mice highlighted that

a local vaginal boost immunization after a nasal prime is even

superior to intranasal boost to induce protection against

Chlamydia infection [23]. Furthermore, vaginal prime/boost

strategy using two recombinant vectors was more efficient

than other routes of immunization (systemic and mucosal) to
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induce a protective immunity against a genital challenge with

a recombinant vaccinia virus [24]. In these studies, local

immunization was shown to favour the amplification and

maintenance of long-lived tissue-resident CD4 and CD8

T cells that play a central role in protection against most

genital pathogens.

Generation of memory responses in the female genital tract

Recent studies showed that cutaneous and intravaginal viral

infections in mice induce the generation of high-affinity tissue-

resident CD8 memory T cells that are critical for the control

of epithelial pathogens re-encountered at their port of entry

[25,26]. Interestingly, Gallichan and Rosenthal demonstrated

that mucosal immunization generates mucosal long-term CD8

T cells in contrast to parenteral immunization and, that these

T cells were critical for antiviral protection against a mucosal

challenge [9]. Hence, the generation of tissue-resident mem-

ory T cells must be a goal of vaccination as reviewed else-

where [27]. A question that arises is whether replication-

defective vaccines can be as efficient as pathogens themselves

or as live vaccines to generate these cells? As a non-replicat-

ing Chlamydia vaccine was able to generate long-term protec-

tive CD4 T cells in the genital tract, this suggests that it is

feasible [23]. The next steps toward the development of vac-

cines generating memory T cells in the genital tract will be to

further characterize these cells and to identify the local fac-

tors that favour their vaginal expansion and maintenance.

Adjuvants

The adjuvants, the antigen-delivery systems and the vaccine

formulations employed will have profound influences on the

intensity and the nature of mucosal immune responses

generated. Potent immunomodulatory agents, including

toxin-based adjuvants, Toll-like receptor mimetics and non-

Toll-like receptor-targeting immunostimulators as well as

delivery systems are under evaluation in animal models and

may represent components of future vaccines as extensively

detailed elsewhere [11,12,28,29]. Such immune modulators

will be useful for the development of vaccines against genital

infections if they can improve the development of vagina-

associated memory B and T cells.

Homing of Effector Cells in the Female

Genital Tract

The homing of lymphocytes to specific tissues is a key com-

ponent of mucosal immunity and is under the control of

chemokine receptors and integrins expressed by effector

cells as well as addressins and chemokines expressed in

tissues. It is already well known that the selective expression

of the integrin a4b7 and the chemokine receptor CCR9

by effector B and T cells determines their homing to gut-

associated lymphoid tissue [30,31]. In contrast, the homing

phenotype of B and T effector and memory cells to the

female genital mucosa is partially understood. Recent data

indicated that the chemokine receptor CCR10 plays a role

in the migration of IgA-producing plasma cells to the genital

tissue in response to the chemokine CCL28 by a mechanism

that is dependent on oestrogens [15,32]. Both studies also

demonstrated that the IgA-specific CCR10+ plasma cells pro-

duced by sublingual and nasal immunizations preferentially

migrate to the uterine mucosa [15,32]. Furthermore, the

expression of the aE integrin (CD103) by cervical human

gag-specific CD8 T cells [33] and by genital HSV-specific

memory T cells [26] suggested that CD103 expression is

important for the mucosal homing and for the maintenance

of T cells in the female genital tract. A question that then

arises is what are the cellular and molecular mechanisms

involved in the homing and the retention of effector and

memory cells in the female genital tract.

Role of Dendritic Cells in the Generation of

Genital Effectors

Dendritic cells (DCs) represent professional antigen-present-

ing cells that have dual roles: the initiation of productive

adaptive immunity including the generation of anti-tumour

cytotoxic T cells and the induction of immunoregulation

through the differentiation of regulatory T-cell subsets. The

vaginal mucosa comprises distinct subsets of DCs including

intra-epithelial DCs expressing or not the langerin marker,

as well as submucosal DCs [34,35]. The presentation of non-

replicating antigens or pathogens following vaginal immuniza-

tion was shown to mainly involve DCs able to locally take

up and process the antigen, and to carry it to draining lymph

nodes to prime naive CD4 and CD8 T cells [6]. We and

others have demonstrated that the mucosal administration of

a protein antigen with cholera toxin used as adjuvant induces

the transient recruitment of immunostimulatory DCs at the

site of immunization, which triggers the generation of sys-

temic and mucosal CD8+ effector T cells [36–38]. Interest-

ingly, a subset of CD11b+ DCs recruited in the vagina after

local stimulation played a crucial role in the generation of

vaginal cytotoxic CD8 T-cell responses whereas langerin-

expressing DCs dampened these responses [35]. Vaginal sub-

mucosal CD11b+ DCs were also involved in the presentation

of HSV-derived antigens to CD4 T cells following HSV-2

intravaginal infection [39]. These data indicate that submuco-
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sal CD11b+ DCs, but not Langerhans cells, may constitute

a potential target for vaccines that aim to generate protec-

tive genital CD4 and CD8 T cells. This would require the

identification of an appropriate surface marker restricted to

this particular DC subset. Vaginal submucosal DCs share the

ability to cross-present exogenous antigens with dermal

XCR1+ CD103+ DCs, which indicates that, if expressed on

mucosal CD11b+ DCs, these markers might be useful to

develop specific DC-targeted vaccines [38,40]. Nevertheless,

further studies are needed to identify markers restricted to

submucosal CD11b+ DCs. Furthermore, tissue-associated

DCs were reported to produce factors that can influence

the expression of mucosal homing markers by activated T

and B cells. This has been well documented in the gastroin-

testinal tract, where a specific CD103+ DC subset that

metabolizes retinoic acid induced the expression of the inte-

grin a4b7 and the chemokine CCR9 on activated T cells and

on antibody-secreting cells, so favouring their migration to

gut-associated lymphoid tissue [30,41]. This discovery may

have implications in the field of mucosal immunization

because DCs from non-intestinal epithelial sites do not

produce retinoic acid. Interestingly, it was recently shown

that adding retinoic acid to a vaccine preparation was suffi-

cient to induce the migration of CD8 effector T cells to the

vaginal mucosa and to protect mice against a genital chal-

lenge with HSV [42], indicating that retinoic acid might be a

component of vaccines that aim to elicit genital immunity.

Consequently, as vaginal CD11b+ DCs induce the homing

of T-cell effectors to the vaginal mucosa, one can ask

whether and how these DCs can imprint vaginal T cells and

whether one can identify a surface marker selectively

expressed by this DC subset to develop a DC-targeted vac-

cine against genital infections.

Mucosal Innate Effector Cells as Immune

Modulators of Genital B-cell and T-cell

Immunity

Different subsets of innate cells are present or recruited to

mucosae following inflammatory processes and infections

where they play a major role in innate defense. Natural killer

(NK) cells are cytotoxic lymphocytes of the innate immune

system [43,44], and are potent immune modulators of adap-

tive immunity during infections either by exerting their cyto-

lytic activity on effector and central memory T lymphocytes

[45–48], or by killing antigen-presenting DCs [49]. Further-

more, NK cells have been recently identified in sub-epithelial

tissues (skin, intestine, tonsils) in humans and mice [50–52],

but they remain to be fully characterized in the female genital

tract. Nevertheless, the contribution of NK cells in protection

against intravaginal HSV-2 infection was evaluated using animal

models where the differentiation of NK cells is affected.

These studies suggested that NK cells are crucial for the viral

clearance even if the models used did not specifically deplete

NK cells [53,54]. Further experiments are needed to evaluate

the role of NK cells in vaginal antiviral immunity. Further-

more, a question that also arises is whether vaginal NK cells

can modulate genital T-cell and B-cell immunity and how?

Recently, interleukin-6-producing NK cells characterized in

the lymph nodes draining the nasal mucosa were shown to

potentiate the induction of mucosal antibodies after nasal

immunization, showing that mucosa-derived NK cells can con-

tribute to the generation of mucosal adaptive immunity [55].

Different subsets of NK T lymphocytes have been mainly

studied in the skin. They have also been recently identified in

the intestinal mucosa [56] but their presence and role in plu-

ristratified mucosae remain to be established. Nevertheless,

the nasal administration of the aGalCer molecule as mucosal

adjuvant together with an HSV antigen was shown to

increase the generation of HSV-specific effector T cells and

to improve the protection of mice against a genital challenge

by HSV-2 [57]. This study suggests that the activation of

mucosal NKT cells by aGalCer ligand potentiates adaptive

immune responses induced by mucosal immunization.

Further characterization of NK and NKT cells present in

the vaginal mucosa and other mucosal sites of induction of

genital immunity (nasal and sublingual mucosae) is needed to

elucidate their functional properties during mucosal vaccina-

tion, as well as their impact on genital effector responses. A

better understanding of the functions of these innate cells

following mucosal immunization may help to optimize vac-

cines strategies against STI.

Conclusions

Recent data highlighted that mucosal immunization or combi-

nations of mucosal and parenteral immunizations are crucial

for the generation of protective immunity against different

genital pathogens, probably because these vaccine strategies

favour the expansion of long-lasting B-cell and T-cell

responses in the genital tract. Future research should be ded-

icated to a better understanding of mechanisms of induction

of genital B-cell and T-cell immunity. Particular attention

should be paid to the role of tissue-associated dendritic cell

subsets and to the emerging role of mucosa-associated innate

immune cells in the generation of protective immunity, as

well as to the mechanisms of homing and retention of cervi-

co-vaginal memory cells which are critical for protection.
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