2,651 research outputs found
Improved detection of nitric oxide radical (NO•) production in an activated macrophage culture with a radical scavenger, car☐y PTIO, and Griess reagent
AbstractAn improved method for the detection of nitric oxide radicals (NO•in cultures of activated macrophages was developed, involving a nitric oxide radical scavenger, 2-(4-car☐yphenyl)-4, 4, 5, 5-tetramethylimidazoline-3-oxide-l-oxyl (car☐y PTIO) and Griess reagent. A murine macrophage-like cell line, J774.1, was activated with interferon-γ (IFN-γ) and bacterial lipopolysaccharide (LPS), which induced the production and secretion of NO2− into the culture supernatant. Addition of car☐y PTIO to the activated macrophages increased the amount of NO2−1 to 4- to 5-fold without cell damages, probably because car☐y PTIO rapidly reacted with NO• to form NO2−1 which was finally assayed by the Griess reaction
On the frequency of N2H+ and N2D+
Context : Dynamical studies of prestellar cores search for small velocity
differences between different tracers. The highest radiation frequency
precision is therefore required for each of these species. Aims : We want to
adjust the frequency of the first three rotational transitions of N2H+ and N2D+
and extrapolate to the next three transitions. Methods : N2H+ and N2D+ are
compared to NH3 the frequency of which is more accurately known and which has
the advantage to be spatially coexistent with N2H+ and N2D+ in dark cloud
cores. With lines among the narrowests, and N2H+ and NH3 emitting region among
the largests, L183 is a good candidate to compare these species. Results : A
correction of ~10 kHz for the N2H+ (J:1-0) transition has been found (~0.03
km/s) and similar corrections, from a few m/s up to ~0.05 km/s are reported for
the other transitions (N2H+ J:3-2 and N2D+ J:1-0, J:2-1, and J:3-2) compared to
previous astronomical determinations. Einstein spontaneous decay coefficients
(Aul) are included
A Difference Version of Nori's Theorem
We consider (Frobenius) difference equations over (F_q(s,t), phi) where phi
fixes t and acts on F_q(s) as the Frobenius endomorphism. We prove that every
semisimple, simply-connected linear algebraic group G defined over F_q can be
realized as a difference Galois group over F_{q^i}(s,t) for some i in N. The
proof uses upper and lower bounds on the Galois group scheme of a Frobenius
difference equation that are developed in this paper. The result can be seen as
a difference analogue of Nori's Theorem which states that G(F_q) occurs as
(finite) Galois group over F_q(s).Comment: 29 page
Immunohistochemical Examination for the Distribution of Podoplanin-Expressing Cells in Developing Mouse Molar Tooth Germs
We recently reported the expression of podoplanin in the apical bud of adult mouse incisal tooth. This study was aimed to investigate the distribution of podoplanin-expressing cells in mouse tooth germs at several developing stages. At the bud stage podoplanin was expressed in oral mucous epithelia and in a tooth bud. At the cap stage podoplanin was expressed on inner and outer enamel epithelia but not in mesenchymal cells expressing the neural crest stem cell marker nestin. At the early bell stage nestin and podoplanin were expressed in cervical loop and odontoblasts. At the root formation stage both nestin and podoplanin were weakly expressed in odontoblasts generating radicular dentin. Podoplanin expression was also found in the Hertwig epithelial sheath. These results suggest that epithelial cells of developing tooth germ acquire the ability to express nestin, and that tooth germ epithelial cells maintain the ability to express podoplanin in oral mucous epithelia. The expression of podoplanin in odontoblasts was induced as tooth germ development advanced, but was suppressed with the completion of the primary dentin, suggesting that podoplanin may be involved in the cell growth of odontoblasts. Nestin may function as an intermediate filament that binds podoplanin in odontoblasts
Rydberg atom mediated polar molecule interactions: a tool for molecular-state conditional quantum gates and individual addressability
We study the possibility to use interaction between a polar molecule in the
ground electronic and vibrational state and a Rydberg atom to construct
two-qubit gates between molecular qubits and to coherently control molecular
states. A polar molecule within the electron orbit in a Rydberg atom can either
shift the Rydberg state, or form Rydberg molecule. Both the atomic shift and
the Rydberg molecule states depend on the initial internal state of the polar
molecule, resulting in molecular state dependent van der Waals or dipole-dipole
interaction between Rydberg atoms. Rydberg atoms mediated interaction between
polar molecules can be enhanced up to times. We describe how the
coupling between a polar molecule and a Rydberg atom can be applied to coherent
control of molecular states, specifically, to individual addressing of
molecules in an optical lattice and non-destructive readout of molecular
qubits
Immunoelectron Microscopic Study of Podoplanin Localization in Mouse Salivary Gland Myoepithelium
We have recently reported that salivary gland cells express the lymphatic endothelial cell marker podoplanin. The present study was aimed to immunohistochemically investigate the expression of the myoepithelial cell marker α-smooth muscle actin (SMA) on podoplanin-positive cells in mouse parotid and sublingual glands, and to elucidate podoplanin localization in salivary gland myoepithelial cells by immunoelectron microscopic study. The distribution of myoepithelial cells expressing podoplanin and α-SMA was examined by immunofluorescent staining, and the localization of reaction products of anti-podoplanin antibody was investigated by pre-embedded immunoelectron microscopic method. In immunohistochemistry, the surfaces of both the mucous acini terminal portion and ducts were covered by a number of extensive myoepithelial cellular processes expressing podoplanin, and the immunostaining level with anti-podoplanin antibody to myoepithelial cells completely coincided with the immunostaining level with anti-α-SMA antibody. These findings suggest that podoplanin is a salivary gland myoepithelial cell antigen, and that the detection level directly reflects the myoepithelial cell distribution. In immunoelectron microscopic study, a number of reaction products with anti-podoplanin antibody were found at the Golgi apparatus binding to the endoplasmic reticulum in the cytoplasm of myoepithelial cells between sublingual gland acinar cells, and were also found at the myoepithelial cell membrane. These findings suggest that salivary gland myoepithelial cells constantly produce podoplanin and glycosylate at the Golgi apparatus, and transport them to the cell membrane. Podoplanin may be involved in maintaining the homeostasis of myoepithelial cells through its characteristic as a mucin-type transmembrane glycoprotein
Distribución y cambios del sistema sbGnRH en machos de Rastrelliger brachysoma durante el período reproductivo
Rastrelliger brachysoma is a mariculture candidate species, but reproduction in captive fish has been problematic. This report examines the difference in the HPG axis, the neuroendocrine system and the development of reproductive tissues between captive vs. wild male R. brachysoma. The gonadosomatic index (GSI) of sexually mature male wild R. brachysoma was 1.12±0.34 and 1.94±0.26 during the non-breeding and breeding seasons, respectively. Captive R. brachysoma had a GSI of 1.88±0.17. All wild R. brachysoma were in the late spermatogenic stage irrespective of seasons. Immunostaining results showed that sbGnRH-immunoreactive neurons were distributed in three areas of the brain, namely the nucleus periventricularis, nucleus preopticus and nucleus lateralis tuberis. Follicle stimulating hormone and luteinizing hormone immunoreactivities were also observed in the pituitary gland. The levels of brain sbGnRH and GtH mRNA were not significantly different between the non-breeding and breeding seasons, but captive fish displayed (times or percent difference) lower mRNA levels than wild fish. These results suggest that these hormones control the testicular development in R. brachysoma and that the impaired reproduction in captivity may be due to their relative lower expression levels of follicle stimulating hormone and luteinizing hormone genes.Rastrelliger brachysoma es una especie candidata para la piscicultura marina, pero la reproducción de individuos cautivos de esta especie ha sido problemática. Este estudio examina las diferencias en el eje hipotálamo-hipófisis-gónada (eje HPG), junto con el desarrollo de tejidos reproductivos, entre machos cautivos y salvajes de R. brachysoma. El índice gonadosomático (IGS) de machos salvajes de R. brachysoma sexualmente maduros fue de 1.12±0.34 y 1.94±0.26 durante la estación no-reproductiva y reproductiva, respectivamente. Los R. brachysoma cautivos mostraron un IGS de 1.88±0.17. Todos los R. brachysoma salvajes se encontraban en un estado de espermatogénesis tardío, independientemente de la estación. Los resultados de inmunotinción mostraron que las neuronas sbGnRH-inmunoreactivas se distribuían en tres áreas del cerebro, nucleus periventricularis, nucleus preopticus y nucleus lateralis tuberis. Se detectó inmunoreactividad para Fsh y Lh también en la hipófisis. Los niveles de mRNA de sbgnrh y gths en cerebro no fueron significativamente diferentes entre las estaciones de reproducción y no-reproducción, aunque se observaron niveles de mRNA menores (diferencia en nivel o porcentaje) en individuos cautivos que en salvajes. Estos resultados sugieren que las hormonas analizadas controlan el desarrollo testicular en R. brachysoma y que la inhibición de la reproducción en cautividad podría ser debida a unos menores niveles de expresión relativa de los genes de Fsh y Lh
Development of continuous flow type hydrothermal reactor for hemicellulose fraction recovery from corncob
ArticleBioresource Technology. 100(11):2842-2848 (2009)journal articl
Muonium as a shallow center in GaN
A paramagnetic muonium (Mu) state with an extremely small hyperfine parameter
was observed for the first time in single-crystalline GaN below 25 K. It has a
highly anisotropic hyperfine structure with axial symmetry along the [0001]
direction, suggesting that it is located either at a nitrogen-antibonding or a
bond-centered site oriented parallel to the c-axis. Its small ionization energy
(=< 14 meV) and small hyperfine parameter (--10^{-4} times the vacuum value)
indicate that muonium in one of its possible sites produces a shallow state,
raising the possibility that the analogous hydrogen center could be a source of
n-type conductivity in as-grown GaN.Comment: 4 figures, to be published in Phys. Rev. Letter
- …