We consider (Frobenius) difference equations over (F_q(s,t), phi) where phi
fixes t and acts on F_q(s) as the Frobenius endomorphism. We prove that every
semisimple, simply-connected linear algebraic group G defined over F_q can be
realized as a difference Galois group over F_{q^i}(s,t) for some i in N. The
proof uses upper and lower bounds on the Galois group scheme of a Frobenius
difference equation that are developed in this paper. The result can be seen as
a difference analogue of Nori's Theorem which states that G(F_q) occurs as
(finite) Galois group over F_q(s).Comment: 29 page