607 research outputs found

    Analysis of an arbitrary-profile, cylindrical, impedance reflector surface illuminated by an E-polarized complex line source beam

    Get PDF
    Cataloged from PDF version of article.Electromagnetic scattering from a cylindrical reflector surface having an arbitrary conic section profile is studied. We assumed an electrically thin layer antenna illuminated by a complex line source in E-polarization mode. Our boundary value formulation, without loss of generality, involves an integral equation approach having impedance-type thin-layer boundary conditions. For simplicity, we also considered both faces of the reflector of the same uniform impedance value. Our computation employs the Method of Analytical Regularization (MAR) technique: the integral equations are converted into the discrete Fourier transform domain yielding two coupled dual series equations, which are then solved by the Fourier inversion and Riemann Hilbert Problem techniques. We demonstrate the accuracy and the convergence behaviors of our numerically solved MAR results that can serve as an accurate benchmark for comparison with widely used results obtained by approximate boundary conditions

    Dynamics of Entanglement and Bell-nonlocality for Two Stochastic Qubits with Dipole-Dipole Interaction

    Full text link
    We have studied the analytical dynamics of Bell nonlocality as measured by CHSH inequality and entanglement as measured by concurrence for two noisy qubits that have dipole-dipole interaction. The nonlocal entanglement created by the dipole-dipole interaction is found to be protected from sudden death for certain initial states

    An experimental investigation of chatter effects on tool life

    Get PDF
    Tool wear is one of the most important considerations in machining operations as it affects surface quality and integrity, productivity and cost. The most commonly used model for tool life analysis is the one proposed by F.W. Taylor about a century ago. Although the extended form of this equation includes the effects of important cutting conditions on tool wear, tool life studies are mostly performed under stable cutting conditions where the effect of chatter vibrations are not considered. This paper presents an empirical attempt to understand tool life under vibratory cutting conditions. Tool wear data are collected in turning and milling on different work materials under stable and chatter conditions. The effects of cutting conditions as well as severity of chatter on tool life are analyzed. The results indicate significant reduction in tool life due to chatter as expected. They also show that the severity of chatter, and thus the vibration amplitude, strongly reduces the life of cutting tools. These results can be useful in evaluating the real cost of chatter by including the reduced tool life. They can also be useful in justifying the cost of chatter suppression and more rigid machining systems

    The evolution of bits and bottlenecks in a scientific workflow trying to keep up with technology: Accelerating 4D image segmentation applied to nasa data

    Get PDF
    In 2016, a team of earth scientists directly engaged a team of computer scientists to identify cyberinfrastructure (CI) approaches that would speed up an earth science workflow. This paper describes the evolution of that workflow as the two teams bridged CI and an image segmentation algorithm to do large scale earth science research. The Pacific Research Platform (PRP) and The Cognitive Hardware and Software Ecosystem Community Infrastructure (CHASE-CI) resources were used to significantly decreased the earth science workflow's wall-clock time from 19.5 days to 53 minutes. The improvement in wall-clock time comes from the use of network appliances, improved image segmentation, deployment of a containerized workflow, and the increase in CI experience and training for the earth scientists. This paper presents a description of the evolving innovations used to improve the workflow, bottlenecks identified within each workflow version, and improvements made within each version of the workflow, over a three-year time period

    Language change quantification using time-separated parallel translations

    Get PDF
    We introduce a systematic approach to language change quantification by studying unconsciously used language features in time-separated parallel translations. For this purpose, we use objective style markers such as vocabulary richness and lengths of words, word stems and suffixes, and employ statistical methods to measure their changes over time. In this study, we focus on the change in Turkish in the second half of the twentieth century. To obtain word stems, we first introduce various stemming techniques and show that they are highly effective. Our statistical analyses show that over time, for both text and lexicon, the length of Turkish words has become significantly longer, and word stems have become significantly shorter. We also show that suffix lengths have become significantly longer for types and the vocabulary richness based on word stems has shrunk significantly. These observations indicate that in contemporary Turkish one would use more suffixes to compensate for the fewer stems to preserve the expressive power of the language at the same level. Our approach can be adapted for quantifying the change in other languages. © The Author 2007. Published by Oxford University Press on behalf of ALLC and ACH. All rights reserved

    Colony morphology and transcriptome profiling of Pseudomonas putida KT2440 and its mutants deficient in alginate or all EPS synthesis under controlled matric potentials

    Get PDF
    Pseudomonas putida is a versatile bacterial species adapted to soil and its fluctuations. Like many other species living in soil, P. putida often faces water limitation. Alginate, an exopolysaccharide (EPS) produced by P. putida, is known to create hydrated environments and alleviate the effect of water limitation. In addition to alginate, P. putida is capable of producing cellulose (bcs), putida exopolysaccharide a (pea), and putida exopolysaccharide b (peb). However, unlike alginate, not much is known about their roles under water limitation. Hence, in this study we examined the role of different EPS components under mild water limitation. To create environmentally realistic water limited conditions as observed in soil, we used the Pressurized Porous Surface Model. Our main hypothesis was that under water limitation and in the absence of alginate other exopolysaccharides would be more active to maintain homeostasis. To test our hypothesis, we investigated colony morphologies and whole genome transcriptomes of P. putida KT2440 wild type and its mutants deficient in synthesis of either alginate or all known EPS. Overall our results support that alginate is an important exopolysaccharide under water limitation and in the absence of alginate other tolerance mechanisms are activated

    On the stability of high-speed milling with spindle speed variation

    Get PDF
    Spindle speed variation is a well-known technique to suppress regenerative machine tool vibrations, but it is usually considered to be effective only for low spindle speeds. In this paper, the effect of spindle speed variation is analyzed in the high-speed domain for spindle speeds corresponding to the first flip (period doubling) and to the first Hopf lobes. The optimal amplitudes and frequencies of the speed modulations are computed using the semidiscre- tization method. It is shown that period doubling chatter can effectively be suppressed by spindle speed variation, although, the technique is not effective for the quasiperiodic chatter above the Hopf lobe. The results are verified by cutting tests. Some special cases are also discussed where the practical behavior of the system differs from the predicted one in some ways. For these cases, it is pointed out that the concept of stability is understood on the scale of the principal period of the system—that is, the speed modulation period for variable spindle speed machining and the tooth passing period for constant spindle speed machining

    Analysis of a thin, penetrable, and nonuniformly loaded cylindrical reflector illuminated by a complex line source

    Get PDF
    A thin, penetrable, and cylindrical reflector is illuminated by the incident field of a complex source point. The scattered field inside the reflector is not considered and its effect is modelled through a thin layer generalised boundary condition (GBC). The authors formulate the structure as an electromagnetic boundary value problem and two resultant coupled singular integral equation system of equations are solved by using regularisation techniques. The GBC provides us to simulate the thin layer better than the resistive model which is applicable only for very thin sheets. Hence, the more reliable data can be obtained for high-contrast and low-loss dielectric material. The scattering and absorption characteristics of the front-fed and offset reflectors are obtained depending on system parameters. Also, the effects of the edge loading are examined for both E- and Hpolarisations. The convergence and the accuracy of the formulation are verified in reasonable computational running time. © The Institution of Engineering and Technology 2017

    Analysis of thin dielectric cylindrical reflector having an arbitrary conic section profile illuminated by complex line source: H-polarization case

    Get PDF
    Arbitrary conic section profile and thin dielectric reflector is analyzed by using the Method of Analytical Regularization (MAR) technique based on Riemann-Hilbert problem and Fourier inversion procedures. The reflector surface is assumed to be illuminated by an H-polarized complex line source type feed antenna. The convergence of the solution is verified and some changes in the radiation patterns are obtained especially for rather thicker cases. © 2014 IEEE
    • …
    corecore