6,710 research outputs found

    Identification of Rigid Body Parameters Using Experimental Modal Analysis Data

    Get PDF
    A simple direct method is presented here to identify the rigid body parameters of a structure under a free-free condition using the measured vibration data and geometrical co-ordinates of the measurement points relative to an arbitrarily selected general co-ordinate system. These parameters consist of mass, co-ordinates of mass centre, mass-moment of inertia, and the corresponding required principal values and axes. The test structure should be Weakly suspended or soft mounted to ground. The rigid body motion should be carefully selected from the measured transfer functions. Practical considerations like the selection of general co-ordinate system, the measurement and excitation points, the minimum set of measurements etc, to be noted during performing the vibration tests or evaluating the rigid body parameters are illustrated with the help of three practical examples. The accuracy of the identified parameters depends, to a great extent, on these considerations. Comparisons between identified and theoretical results are also given

    Magnetocaloric effect and improved relative cooling power in (La0.7Sr0.3MnO3/SrRuO3) superlattices

    Full text link
    Magnetic properties of a series of (La0.7Sr0.3MnO3/SrRuO3) superlattices, where the SrRuO3 layer thickness is varying, are examined. A room-temperature magnetocaloric effect is obtained owing to the finite size effect which reduces the TC of La0.7Sr0.3MnO3 layers. While the working temperature ranges are enlarged,, -DeltaSmax values remains similar to the values in polycrystalline La0.7Sr0.3MnO3. Consequently, the relative cooling powers are significantly improved, the microscopic mechanism of which is related to the effect of the interfaces at La0.7Sr0.3MnO3/SrRuO3 and higher nanostructural disorder. This study indicates that artificial oxide superlattices/multilayers might provide an alternative pathway in searching for efficient room-temperature magnetic refrigerators for (nano)microscale systems.Comment: 14^pages, 3 figures, Submitted to J. Phys. Cond. Ma

    Experimental Identification of Modal Density Parameters of Light Weight Structures

    Get PDF
    A basic requirement for the analysis of vibro-acoustic problems by means of the Statistical Energy Analysis (SEA) is the knowledge of modal densities of the tested subsystems. For simple structures, modal densities are obtained by theoretical solutions. The application of the SEA to complex light weight structures often leads to sophisticated subsystems the modal densities of which cannot be received from theoretical solutions. Therefore, experimental procedures for the identification of modal densities are needed. This paper describes an experimental method based on the theoretical relation between the modal density and the real part of the point admittance, the conductance. Simulations of a simply supported rectangular plate show the accuracy and the limits of the method A steel plate and a thin-walled cylinder made offiber composite material have been thoroughly investigated by experiments. By this, the influence of the mass correction of the measured conductances is discussed in the paper. The experimental results are compared with theoretical results obtained from the code AutoSEA2. For medium and higher frequencies the results are in fairly good agreement

    Coronary artery spasm and non-Q-wave myocardial infarction following intravenous ephedrine in two healthy women under spinal anaesthesia

    Get PDF
    Vasovagal episodes occur frequently in young healthy patients undergoing venous cannulation and loco-regional anaesthesia. We report two cases of severe coronary vasospasm and non-Qwave infarction in healthy young women after administration of ephedrine for vasovagal symptoms at the onset of spinal anaesthesia. In the light of unopposed vagal predominance predisposing patients to coronary vasospasm, even in young healthy patients, atrophine and not ephedrine should be the first line treatment for bradycardia with or without hypotension under spinal anaesthesi

    The Effect of Harbor Developments on Future High-Tide Flooding in Miami, Florida

    Get PDF
    Little is known about the effect of tidal changes on minor flooding in most lagoonal estuaries, often due to a paucity of historical records that predate landscape changes. In this contribution, we recover and apply archival tidal range data to show that the mean tidal range in Miami, Florida, has almost doubled since 1900, from 0.32 to 0.61 m today. A likely cause is the dredging of a ∼15 m deep, 150 m wide harbor entrance channel beginning in the early 20th century, which changed northern Biscayne Bay from a choked inlet system to one with a tidal range close to coastal conditions. To investigate the implications for high-tide flooding, we develop and validate a tidal-inference based methodology that leverages estimates of pre-1900 tidal range to obtain historical tidal predictions and constituents. Next, water level predictions that represent historical and modern water level variations are projected forward in time using different sea level rise scenarios. Results show that the historical increase in tidal range hastened the occurrence of present-day flooding, and that the total integrated number of days with high-tide floods in the 2020–2100 period will be approximately O(103) more under present day tides compared to pre-development conditions. These results suggest that tidal change may be a previously under-appreciated factor in the increasing prevalence of high-tide flooding in lagoonal estuaries, and our methods open the door to improving our understanding of other heavily-altered systems

    "Last-Mile" preparation for a potential disaster

    Get PDF
    Extreme natural events, like e.g. tsunamis or earthquakes, regularly lead to catastrophes with dramatic consequences. In recent years natural disasters caused hundreds of thousands of deaths, destruction of infrastructure, disruption of economic activity and loss of billions of dollars worth of property and thus revealed considerable deficits hindering their effective management: Needs for stakeholders, decision-makers as well as for persons concerned include systematic risk identification and evaluation, a way to assess countermeasures, awareness raising and decision support systems to be employed before, during and after crisis situations. The overall goal of this study focuses on interdisciplinary integration of various scientific disciplines to contribute to a tsunami early warning information system. In comparison to most studies our focus is on high-end geometric and thematic analysis to meet the requirements of small-scale, heterogeneous and complex coastal urban systems. Data, methods and results from engineering, remote sensing and social sciences are interlinked and provide comprehensive information for disaster risk assessment, management and reduction. In detail, we combine inundation modeling, urban morphology analysis, population assessment, socio-economic analysis of the population and evacuation modeling. The interdisciplinary results eventually lead to recommendations for mitigation strategies in the fields of spatial planning or coping capacity

    Wave-induced changes in seaweed toughness entail plastic modifications in snail traits maintaining consumption efficacy

    Get PDF
    Summary: Environmental stress can influence species traits and performance considerably. Using a seaweed-snail system from NW (Nova Scotia) and NE (Helgoland) Atlantic rocky shores, we examined how physical stress (wave exposure) modulates traits in the seaweed Fucus vesiculosus and indirectly in its main consumer, the periwinkle Littorina obtusata. In both regions, algal tissue toughness increased with wave exposure. Reciprocal-transplant experiments showed that tissue toughness adjusted plastically to the prevailing level of wave exposure. Choice experiments tested the feeding preference of snails from sheltered, exposed and very exposed habitats for algae from such wave exposures. Snails from exposed and very exposed habitats consumed algal tissues at similar rates irrespective of the exposure of origin of the algae. However, snails from sheltered habitats consumed less algal tissues from very exposed habitats than tissues from sheltered and exposed habitats. Choice assays using reconstituted algal food (triturated during preparation) identified high thallus toughness as the explanation for the low preference of snails from sheltered habitats for algae from very exposed habitats. Ultrastructural analyses of radulae indicated that rachidian teeth were longest and the number of cusps in lateral teeth (grazing-relevant traits) was highest in snails from very exposed habitats, suggesting that radulae are best suited to rupture tough algal tissues in such snails. No-choice feeding experiments revealed that these radular traits were also phenotypically plastic, as they adjusted to the toughness of the algal food. Synthesis. This study indicates that the observed plasticity in the feeding ability of snails is mediated by wave exposure through phenotypic plasticity in the tissue toughness of algae. Thus, plasticity in consumers and their resource species may reduce the potential effects of physical stress on their interaction. Experiments revealed that environmental stress (wave exposure) modulated a structural seaweed trait (thallus toughness) and, indirectly, feeding-relevant traits (radular morphology) in the seaweed's main consumer (snail), enabling snails to maintain consumption efficacy across the observed range in seaweed toughness. Thus, plasticity in consumers and their resource species may reduce the potential effects of physical stress on their interaction

    Performance assessment of a NaI(Tl) gamma counter for PET applications with methods for improved quantitative accuracy and greater standardization

    Get PDF
    BACKGROUND: Although NaI(Tl) gamma counters play an important role in many quantitative positron emission tomography (PET) protocols, their calibration for positron-emitting samples has not been standardized across imaging sites. In this study, we characterized the operational range of a gamma counter specifically for positron-emitting radionuclides, and we assessed the role of traceable (68)Ge/(68)Ga sources for standardizing system calibration. METHODS: A NaI(Tl) gamma counter was characterized with respect to count rate performance, adequacy of detector shielding, system stability, and sample volume effects using positron-emitting radionuclides (409- to 613-keV energy window). System efficiency was measured using (18)F and compared with corresponding data obtained using a long-lived (68)Ge/(68)Ga source that was implicitly traceable to a national standard. RESULTS: One percent count loss was measured at 450 × 10(3) counts per minute. Penetration of the detector shielding by 511-keV photons gave rise to a negligible background count rate. System stability tests showed a coefficient of variation of 0.13% over 100 days. For a sample volume of 4 mL, the efficiencies relative to those at 0.1 mL were 0.96, 0.94, 0.91, 0.78, and 0.72 for (11)C, (18)F, (125)I, (99m)Tc, and (51)Cr, respectively. The efficiency of a traceable (68)Ge/(68)Ga source was 30.1% ± 0.07% and was found to be in close agreement with the efficiency for (18)F after consideration of the different positron fractions. CONCLUSIONS: Long-lived (68)Ge/(68)Ga reference sources, implicitly traceable to a national metrology institute, can aid standardization of gamma counter calibration for (18)F. A characteristic feature of positron emitters meant that accurate calibration could be maintained over a wide range of sample volumes by using a narrow energy window centered on the 511-keV peak

    Study of the impact of tissue density heterogeneities on 3-dimensional abdominal dosimetry: comparison between dose kernel convolution and direct monte carlo methods.

    Get PDF
    Dose kernel convolution (DK) methods have been proposed to speed up absorbed dose calculations in molecular radionuclide therapy. Our aim was to evaluate the impact of tissue density heterogeneities (TDH) on dosimetry when using a DK method and to propose a simple density-correction method. METHODS: This study has been conducted on 3 clinical cases: case 1, non-Hodgkin lymphoma treated with (131)I-tositumomab; case 2, a neuroendocrine tumor treatment simulated with (177)Lu-peptides; and case 3, hepatocellular carcinoma treated with (90)Y-microspheres. Absorbed dose calculations were performed using a direct Monte Carlo approach accounting for TDH (3D-RD), and a DK approach (VoxelDose, or VD). For each individual voxel, the VD absorbed dose, D(VD), calculated assuming uniform density, was corrected for density, giving D(VDd). The average 3D-RD absorbed dose values, D(3DRD), were compared with D(VD) and D(VDd), using the relative difference Δ(VD/3DRD). At the voxel level, density-binned Δ(VD/3DRD) and Δ(VDd/3DRD) were plotted against ρ and fitted with a linear regression. RESULTS: The D(VD) calculations showed a good agreement with D(3DRD). Δ(VD/3DRD) was less than 3.5%, except for the tumor of case 1 (5.9%) and the renal cortex of case 2 (5.6%). At the voxel level, the Δ(VD/3DRD) range was 0%-14% for cases 1 and 2, and -3% to 7% for case 3. All 3 cases showed a linear relationship between voxel bin-averaged Δ(VD/3DRD) and density, ρ: case 1 (Δ = -0.56ρ + 0.62, R(2) = 0.93), case 2 (Δ = -0.91ρ + 0.96, R(2) = 0.99), and case 3 (Δ = -0.69ρ + 0.72, R(2) = 0.91). The density correction improved the agreement of the DK method with the Monte Carlo approach (Δ(VDd/3DRD) < 1.1%), but with a lesser extent for the tumor of case 1 (3.1%). At the voxel level, the Δ(VDd/3DRD) range decreased for the 3 clinical cases (case 1, -1% to 4%; case 2, -0.5% to 1.5%, and -1.5% to 2%). No more linear regression existed for cases 2 and 3, contrary to case 1 (Δ = 0.41ρ - 0.38, R(2) = 0.88) although the slope in case 1 was less pronounced. CONCLUSION: This study shows a small influence of TDH in the abdominal region for 3 representative clinical cases. A simple density-correction method was proposed and improved the comparison in the absorbed dose calculations when using our voxel S value implementation
    corecore