276 research outputs found

    Distribution of Eigenvalues of Ensembles of Asymmetrically Diluted Hopfield Matrices

    Full text link
    Using Grassmann variables and an analogy with two dimensional electrostatics, we obtain the average eigenvalue distribution ρ(ω)\rho(\omega) of ensembles of N×NN \times N asymmetrically diluted Hopfield matrices in the limit NN \rightarrow \infty. We found that in the limit of strong dilution the distribution is uniform in a circle in the complex plane.Comment: 9 pages, latex, 4 figure

    Aging dynamics of +-J Edwards-Anderson spin glasses

    Full text link
    We analyze by means of extensive computer simulations the out of equilibrium dynamics of Edwards-Anderson spin glasses in d=4 and d=6 dimensions with +-J interactions. In particular, we focus our analysis on the scaling properties of the two-time autocorrelation function in a range of temperatures from T=0.07 T_c to T=0.75 T_c in both systems. We observe that the aging dynamics of the +-J models is different from that observed in the corresponding Gaussian models. In both the 4d and 6d models at very low temperatures we study the effects of discretization of energy levels. Strong interrupted aging behaviors are found. We argue that this is because in the times accessible to our simulations the systems are only able to probe activated dynamics through the lowest discrete energy levels and remain trapped around nearly flat regions of the energy landscape. For temperatures T >= 0.5 T_c in 4d we find logarithmic scalings that are compatible with dynamical ultrametricity, while in 6d the relaxation can also be described by super-aging scalings.Comment: 7 pages, 10 figure

    Influence of Refractory Periods in the Hopfield model

    Full text link
    We study both analytically and numerically the effects of including refractory periods in the Hopfield model for associative memory. These periods are introduced in the dynamics of the network as thresholds that depend on the state of the neuron at the previous time. Both the retrieval properties and the dynamical behaviour are analyzed.Comment: Revtex, 7 pages, 7 figure

    The exchange bias phenomenon in uncompensated interfaces: Theory and Monte Carlo simulations

    Full text link
    We performed Monte Carlo simulations in a bilayer system composed by two thin films, one ferromagnetic (FM) and the other antiferromagnetic (AFM). Two lattice structures for the films were considered: simple cubic (sc) and a body center cubic (bcc). In both lattices structures we imposed an uncompensated interfacial spin structure, in particular we emulated a FeF2-FM system in the case of the (bcc) lattice. Our analysis focused on the incidence of the interfacial strength interactions between the films J_eb and the effect of thermal fluctuations on the bias field H_EB. We first performed Monte Carlo simulations on a microscopic model based on classical Heisenberg spin variables. To analyze the simulation results we also introduced a simplified model that assumes coherent rotation of spins located on the same layer parallel to the interface. We found that, depending on the AFM film anisotropy to exchange ratio, the bias field is either controlled by the intrinsic pinning of a domain wall parallel to the interface or by the stability of the first AFM layer (quasi domain wall) near the interface.Comment: 18 pages, 11 figure

    Long-range effects in granular avalanching

    Full text link
    We introduce a model for granular flow in a one-dimensional rice pile that incorporates rolling effects through a long-range rolling probability for the individual rice grains proportional to rρr^{-\rho}, rr being the distance traveled by a grain in a single topling event. The exponent ρ\rho controls the average rolling distance. We have shown that the crossover from power law to stretched exponential behaviors observed experimentally in the granular dynamics of rice piles can be well described as a long-range effect resulting from a change in the transport properties of individual grains. We showed that stretched exponential avalanche distributions can be associated with a long-range regime for 1<ρ<21<\rho<2 where the average rolling distance grows as a power law with the system size, while power law distributions are associated with a short range regime for ρ>2\rho>2, where the average rolling distance is independent of the system size.Comment: 5 pages, 3 figure

    Aging in an infinite-range Hamiltonian system of coupled rotators

    Full text link
    We analyze numerically the out-of-equilibrium relaxation dynamics of a long-range Hamiltonian system of NN fully coupled rotators. For a particular family of initial conditions, this system is known to enter a particular regime in which the dynamic behavior does not agree with thermodynamic predictions. Moreover, there is evidence that in the thermodynamic limit, when NN\to \infty is taken prior to tt\to \infty, the system will never attain true equilibrium. By analyzing the scaling properties of the two-time autocorrelation function we find that, in that regime, a very complex dynamics unfolds in which {\em aging} phenomena appear. The scaling law strongly suggests that the system behaves in a complex way, relaxing towards equilibrium through intricate trajectories. The present results are obtained for conservative dynamics, where there is no thermal bath in contact with the system. This is the first time that aging is observed in such Hamiltonian systems.Comment: Figs. 2-4 modified, minor changes in text. To appear in Phys. Rev.

    Damage spreading in random field systems

    Full text link
    We investigate how a quenched random field influences the damage spreading transition in kinetic Ising models. To this end we generalize a recent master equation approach and derive an effective field theory for damage spreading in random field systems. This theory is applied to the Glauber Ising model with a bimodal random field distribution. We find that the random field influences the spreading transition by two different mechanisms with opposite effects. First, the random field favors the same particular direction of the spin variable at each site in both systems which reduces the damage. Second, the random field suppresses the magnetization which, in turn, tends to increase the damage. The competition between these two effects leads to a rich behavior.Comment: 4 pages RevTeX, 3 eps figure

    Linear instability and statistical laws of physics

    Full text link
    We show that a meaningful statistical description is possible in conservative and mixing systems with zero Lyapunov exponent in which the dynamical instability is only linear in time. More specifically, (i) the sensitivity to initial conditions is given by ξ=[1+(1q)λqt]1/(1q) \xi =[1+(1-q)\lambda_q t]^{1/(1-q)} with q=0q=0; (ii) the statistical entropy Sq=(1ipiq)/(q1)(S1=ipilnpi)S_q=(1-\sum_i p_i^q)/(q-1) (S_1=-\sum_i p_i \ln p_i) in the infinitely fine graining limit (i.e., WW\equiv {\it number of cells into which the phase space has been partitioned} \to\infty), increases linearly with time only for q=0q=0; (iii) a nontrivial, qq-generalized, Pesin-like identity is satisfied, namely the limtlimWS0(t)/t=max{λ0}\lim_{t \to \infty} \lim_{W \to \infty} S_0(t)/t=\max\{\lambda_0\}. These facts (which are in analogy to the usual behaviour of strongly chaotic systems with q=1q=1), seem to open the door for a statistical description of conservative many-body nonlinear systems whose Lyapunov spectrum vanishes.Comment: 7 pages including 2 figures. The present version is accepted for publication in Europhysics Letter

    Interplay between coarsening and nucleation in an Ising model with dipolar interactions

    Get PDF
    We study the dynamical behavior of a square lattice Ising model with exchange and dipolar interactions by means of Monte Carlo simulations. After a sudden quench to low temperatures we find that the system may undergo a coarsening process where stripe phases with different orientations compete or alternatively it can relax initially to a metastable nematic phase and then decay to the equilibrium stripe phase through nucleation. We measure the distribution of equilibration times for both processes and compute their relative probability of occurrence as a function of temperature and system size. This peculiar relaxation mechanism is due to the strong metastability of the nematic phase, which goes deep in the low temperature stripe phase. We also measure quasi-equilibrium autocorrelations in a wide range of temperatures. They show a distinct decay to a plateau that we identify as due to a finite fraction of frozen spins in the nematic phase. We find indications that the plateau is a finite size effect. Relaxation times as a function of temperature in the metastable region show super-Arrhenius behavior, suggesting a possible glassy behavior of the system at low temperatures
    corecore