3,276 research outputs found

    Effectiveness of a soil mapping geomatic approach to predict the spatial distribution of soil types and their properties

    Get PDF
    A soil map (1:50,000 scale) was recently produced in Sardinia (Italy) using a cost-effective GIS approach. In this study we aimed to verify, in two pilot areas and by means of statistical analysis, the effectiveness of the adopted methodology in representing and predicting the spatial distribution of soil types and properties. We focused on evaluation of 1) the influence of landforms and parent materials on soil types (WRB Reference Soil Groups) and selected soil properties and 2) the suitability of the adopted methodology for calibrating a model to predict land unit composition in terms of different soil types. Leptosols, Regosols and Cambisols were prevalent on slopes, with Leptosols being more frequent on convex slopes and Regosols and Cambisols on concave slopes. In flat areas, soil types mainly depended on the type and age of parent material, with Regosols and Cambisols prevailing on Holocene deposits and highly developed soils (mainly Luvisols) largely prevailing on Pleistocene deposits. On hard rock, Leptosols were very frequent on terrigenous metamorphic rock and frequent on granite. Besides Leptosols, Regosols occurred more frequently than Cambisols on both parent materials. Landforms strongly influenced soil depth and available water capacity. Soils on plains were deeper than those on slopes, where convex forms had shallower soils than concave forms. A similar trend applied to the available water capacity. The parent material had a significant effect on topsoil properties (thickness, texture, pH and organic carbon content) of soils belonging to the same WRB Reference Soil Group (analysis done on the most relevant WRB Reference Soil Groups, i.e. Leptosols, Regosols and Cambisols). We calibrated and tested stepwise multiple linear regressions (MLR) and general linear models (GLM) to predict the composition of map units in terms of different WRB Reference Soil Groups. The two models gave very similar results, with distinct distribution patterns that were coherent with the relationships observed between soil groups and specific combination of terrain attributes and parent materials. Results showed that both models were more reliable in predicting the absence rather than presence of a given soil type

    Epigenetic mechanisms of endocrine-disrupting chemicals in obesity

    Get PDF
    The incidence of obesity has dramatically increased over the last decades. Recently, there has been a growing interest in the possible association between the pandemics of obesity and some endocrine-disrupting chemicals (EDCs), termed “obesogens”. These are a heterogeneous group of exogenous compounds that can interfere in the endocrine regulation of energy metabolism and adipose tissue structure. Oral intake, inhalation, and dermal absorption represent the major sources of human exposure to these EDCs. Recently, epigenetic changes such as the methylation of cytosine residues on DNA, post-translational modification of histones, and microRNA expression have been considered to act as an intermediary between deleterious effects of EDCs and obesity development in susceptible individuals. Specifically, EDCs exposure during early-life development can detrimentally affect individuals via inducing epigenetic modifications that can permanently change the epigenome in the germline, enabling changes to be transmitted to the next generations and predisposing them to a multitude of diseases. The purpose of this review is to analyze the epigenetic alterations putatively induced by chemical exposures and their ability to interfere with the control of energy metabolism and adipose tissue regulation, resulting in imbalances in the control of body weight, which can lead to obesity

    Glucosamine-induced endoplasmic reticulum stress affects GLUT4 expression via activating transcription factor 6 in rat and human skeletal muscle cells

    Get PDF
    AIMS/HYPOTHESIS: Glucosamine, generated during hyperglycaemia, causes insulin resistance in different cells. Here we sought to evaluate the possible role of endoplasmic reticulum (ER) stress in the induction of insulin resistance by glucosamine in skeletal muscle cells. METHODS: Real-time RT-PCR analysis, 2-deoxy-D: -glucose (2-DG) uptake and western blot analysis were carried out in rat and human muscle cell lines. RESULTS: In both rat and human myotubes, glucosamine treatment caused a significant increase in the expression of the ER stress markers immunoglobulin heavy chain-binding protein/glucose-regulated protein 78 kDa (BIP/GRP78 [also known as HSPA5]), X-box binding protein-1 (XBP1) and activating transcription factor 6 (ATF6). In addition, glucosamine impaired insulin-stimulated 2-DG uptake in both rat and human myotubes. Interestingly, pretreatment of both rat and human myotubes with the chemical chaperones 4-phenylbutyric acid (PBA) or tauroursodeoxycholic acid (TUDCA), completely prevented the effect of glucosamine on both ER stress induction and insulin-induced glucose uptake. In both rat and human myotubes, glucosamine treatment reduced mRNA and protein levels of the gene encoding GLUT4 and mRNA levels of the main regulators of the gene encoding GLUT4 (myocyte enhancer factor 2 a [MEF2A] and peroxisome proliferator-activated receptor-gamma coactivator 1alpha [PGC1alpha]). Again, PBA or TUDCA pretreatment prevented glucosamine-induced inhibition of GLUT4 (also known as SLC2A4), MEF2A and PGC1alpha (also known as PPARGC1A). Finally, we showed that overproduction of ATF6 is sufficient to inhibit the expression of genes GLUT4, MEF2A and PGC1alpha and that ATF6 silencing with a specific small interfering RNA is sufficient to completely prevent glucosamine-induced inhibition of GLUT4, MEF2A and PGC1alpha in skeletal muscle cells. CONCLUSIONS/INTERPRETATION: In this work we show that glucosamine-induced ER stress causes insulin resistance in both human and rat myotubes and impairs GLUT4 production and insulin-induced glucose uptake via an ATF6-dependent decrease of the GLUT4 regulators MEF2A and PGC1alpha

    The Heavy Photon Search beamline and its performance

    Full text link
    The Heavy Photon Search (HPS) is an experiment to search for a hidden sector photon, aka a heavy photon or dark photon, in fixed target electroproduction at the Thomas Jefferson National Accelerator Facility (JLab). The HPS experiment searches for the e+^+e^- decay of the heavy photon with bump hunt and detached vertex strategies using a compact, large acceptance forward spectrometer, consisting of a silicon microstrip detector (SVT) for tracking and vertexing, and a PbWO4_4 electromagnetic calorimeter for energy measurement and fast triggering. To achieve large acceptance and good vertexing resolution, the first layer of silicon detectors is placed just 10 cm downstream of the target with the sensor edges only 500 μ\mum above and below the beam. Placing the SVT in such close proximity to the beam puts stringent requirements on the beam profile and beam position stability. As part of an approved engineering run, HPS took data in 2015 and 2016 at 1.05 GeV and 2.3 GeV beam energies, respectively. This paper describes the beam line and its performance during that data taking

    Shedding light on surface exposition of poly(ethylene glycol) and folate targeting units on nanoparticles of poly(ε-caprolactone) diblock copolymers: beyond a paradigm

    Get PDF
    Polymeric nanoparticles (NPs) of poly(\u3b5-caprolactone) (PCL) covered with a hydrophilic poly(ethylene glycol) (PEG) shell are usually prepared from diblock PEG-PCL copolymers through different techniques. Furthermore PEG, NPs can be decorated with targeting ligands to accumulate in specific cell lines. However, the density and conformation of PEG on the surface and its impact on the exposition of small targeting ligands has been poorly considered so far although this has a huge impact on biological behaviour. Here, we focus on PEG-PCL NPs and their folate-targeted version to encourage accumulation in cancer cells overexpressing folate receptor \u3b1. NPs were prepared with mixtures of PEG-PCL with different PEG length (short 1.0kDa, long 2.0kDa,) and a folate-functionalized PEG-PCL (PEG 1.5kDa) by the widely employed solvent displacement method. In depth characterization of NPs surface by 1H NMR, fluorescence and photon correlation spectroscopy evidenced a PEGylation extent below 7% with PEG in a mushroom conformation and the presence of folate more exposed to water pool in the case of copolymer with short PEG. NPs with short PEG adsorbed HSA forming a soft corona without aggregating. Although limited, PEGylation overall reduced NPs uptake in human macrophages. Uptake of NPs exposing folate prepared with short PEG was higher in KB cells (FR+) than in A549 (FR-), occurred via FR-receptor and involved lipid rafts-dependent endocytosis. In conclusion, the present results demonstrate that PEG length critically affects protein interaction and folate exposition with a logical impact on receptor-mediated cell uptake. Our study highlights that the too simplistic view suggesting that PEG-PCL gives PEG-coated NPs needs to be re-examined in the light of actual surface properties, which should always be considered case-by-case

    FUS MUTATIONS IN SPORADIC AMYOTROPHIC LATERAL SCLEROSIS: CLINICAL AND GENETIC ANALYSIS

    Get PDF
    Fused in sarcoma (FUS) or translocation in liposarcoma (TLS), a DNA/RNA-binding protein, causes a dominant autosomal inherited form of amyotrophic lateral sclerosis (ALS), ALS 6. Its main role in neurodegeneration is highlighted by the presence of cytoplasmic accumulation of its mutant protein form in ALS patients. To further define the frequency and spectrum of FUS gene mutations, we have performed a molecular screening of a cohort of 327 Italian patients from Southern Italy with sporadic ALS (SALS). We identified 4 patients carrying 3 different missense mutations and several polymorphisms. Two different substitutions occurring in the same amino acidic position have been observed in 2 patients: R521G and R521C respectively; P525L mutation has been found in 2 additional cases. Most of the patients with FUS mutations showed early symptom onset and had short disease survival. We also detected 4 different polymorphic variants (3=-untranslated region [UTR] variant, c.*41G.A; c.52313ins[GAGGTG]; c.335-15del[TTTT]; and rs13331793) in 9 patients from within our cohort. This study underlines the importance of population-based mutation screening of newly identified genes. \ua9 2011 Elsevier Inc. All rights reserved

    Performance and exhaust gases of a diesel engine using different magnetic treatments of the fuel

    Get PDF
    In this research, different magnetic treatments were applied to diesel fuel using static magnetic fields of 0.36T of magnetic induction. The magnetic conditioners (MCs) were installed in different positions of the fuel lines in the engine and the magnetic treatment of the diesel was also carried out before introducing it into the engine tanks. The study was conducted using a four-stroke, two-cylinder, Lister Petter (LPWS2) engine with a compression ratio of 23.5:1 and a constant engine speed of 1500 rpm. The emissions of carbon monoxide (CO), carbon dioxide (CO2), oxygen (O2), nitrogen oxides and the temperature of the exhaust gases and the mass consumption of fuel were measured. The highest levels of reduction were achieved with the magnetic treatments that locate the MC directly in the engine's pipes. As the number of MC in the engine pipes increases, the emissions of polluting gases decrease. With the treatment that locates one MC in front of each injector, two MC at the entrance of the filter and two MC in the return of fuel were able to increase the O2 emissions by 6.9% and decrease the CO emissions in about 21.3% in the last load of the generator set. With this treatment a decrease in fuel consumption of 4.89% to 80% of engine load was obtained

    Plasma Proteomic Variables Related to COVID-19 Severity: An Untargeted nLC-MS/MS Investigation

    Get PDF
    Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection leads to a wide range of clinical manifestations and determines the need for personalized and precision medicine. To better understand the biological determinants of this heterogeneity, we explored the plasma proteome of 43 COVID-19 patients with different outcomes by an untargeted liquid chromatography-mass spectrometry approach. The comparison between asymptomatic or pauci-symptomatic subjects (MILDs), and hospitalised patients in need of oxygen support therapy (SEVEREs) highlighted 29 proteins emerged as differentially expressed: 12 overexpressed in MILDs and 17 in SEVEREs. Moreover, a supervised analysis based on a decision-tree recognised three proteins (Fetuin-A, Ig lambda-2chain-C-region, Vitronectin) that are able to robustly discriminate between the two classes independently from the infection stage. In silico functional annotation of the 29 deregulated proteins pinpointed several functions possibly related to the severity; no pathway was associated exclusively to MILDs, while several only to SEVEREs, and some associated to both MILDs and SEVEREs; SARS-CoV-2 signalling pathway was significantly enriched by proteins up-expressed in SEVEREs (SAA1/2, CRP, HP, LRG1) and in MILDs (GSN, HRG). In conclusion, our analysis could provide key information for 'proteomically' defining possible upstream mechanisms and mediators triggering or limiting the domino effect of the immune-related response and characterizing severe exacerbations
    corecore