4,194 research outputs found

    Sodium vacancy ordering and the co-existence of localized spins and itinerant charges in NaxCoO2

    Full text link
    The sodium cobaltate family (NaxCoO2) is unique among transition metal oxides because the Co sits on a triangular lattice and its valence can be tuned over a wide range by varying the Na concentration x. Up to now detailed modeling of the rich phenomenology (which ranges from unconventional superconductivity to enhanced thermopower) has been hampered by the difficulty of controlling pure phases. We discovered that certain Na concentrations are specially stable and are associated with superlattice ordering of the Na clusters. This leads naturally to a picture of co-existence of localized spins and itinerant charge carriers. For x = 0.84 we found a remarkably small Fermi energy of 87 K. Our picture brings coherence to a variety of measurements ranging from NMR to optical to thermal transport. Our results also allow us to take the first step towards modeling the mysterious ``Curie-Weiss'' metal state at x = 0.71. We suggest the local moments may form a quantum spin liquid state and we propose experimental test of our hypothesis.Comment: 16 pages, 5 figure

    Density wave and supersolid phases of correlated bosons in an optical lattice

    Full text link
    Motivated by the recent experiment on the Bose-Einstein condensation of 52^{52}Cr atoms with long-range dipolar interactions (Werner J. et al., Phys. Rev. Lett., 94 (2005) 183201), we consider a system of bosons with repulsive nearest and next-nearest neighbor interactions in an optical lattice. The ground state phase diagram, calculated using the Gutzwiller ansatz, shows, apart from the superfluid (SF) and the Mott insulator (MI), two modulated phases, \textit{i.e.}, the charge density wave (CDW) and the supersolid (SS). Excitation spectra are also calculated which show a gap in the insulators, gapless, phonon mode in the superfluid and the supersolid, and a mode softening of superfluid excitations in the vicinity of the modulated phases. We discuss the possibility of observing these phases in cold dipolar atoms and propose experiments to detect them

    The Casimir force on a surface with shallow nanoscale corrugations: Geometry and finite conductivity effects

    Full text link
    We measure the Casimir force between a gold sphere and a silicon plate with nanoscale, rectangular corrugations with depth comparable to the separation between the surfaces. In the proximity force approximation (PFA), both the top and bottom surfaces of the corrugations contribute to the force, leading to a distance dependence that is distinct from a flat surface. The measured Casimir force is found to deviate from the PFA by up to 15%, in good agreement with calculations based on scattering theory that includes both geometry effects and the optical properties of the material

    Improving the Sensitivity of LISA

    Get PDF
    It has been shown in the past, that the six Doppler data streams obtained LISA configuration can be combined by appropriately delaying the data streams for cancelling the laser frequency noise. Raw laser noise is several orders of magnitude above the other noises and thus it is essential to bring it down to the level of shot, acceleration noises. A rigorous and systematic formalism using the techniques of computational commutative algebra was developed which generates all the data combinations cancelling the laser frequency noise. The relevant data combinations form a first module of syzygies. In this paper we use this formalism for optimisation of the LISA sensitivity by analysing the noise and signal covariance matrices. The signal covariance matrix, averaged over polarisations and directions, is calculated for binaries whose frequency changes at most adiabatically. We then present the extremal SNR curves for all the data combinations in the module. They correspond to the eigenvectors of the noise and signal covariance matrices. We construct LISA `network' SNR by combining the outputs of the eigenvectors which improves the LISA sensitivity substantially. The maximum SNR curve can yield an improvement upto 70 % over the Michelson, mainly at high frequencies, while the improvement using the network SNR ranges from 40 % to over 100 %. Finally, we describe a simple toy model, in which LISA rotates in a plane. In this analysis, we estimate the improvement in the LISA sensitivity, if one switches from one data combination to another as it rotates. Here the improvement in sensitivity, if one switches optimally over three cyclic data combinations of the eigenvector is about 55 % on an average over the LISA band-width. The corresponding SNR improvement is 60 %, if one maximises over the module.Comment: 16 pages, 10 figures, Submitted to Class. Quant. Gravit

    RNA polymerase III subunit architecture and implications for open promoter complex formation

    Get PDF
    Transcription initiation by eukaryotic RNA polymerase (Pol) III relies on the TFIIE-related subcomplex C82/34/31. Here we combine crosslinking and hydroxyl radical probing to position the C82/34/31 subcomplex around the Pol III active center cleft. The extended winged helix (WH) domains 1 and 4 of C82 localize to the polymerase domains clamp head and clamp core, respectively, and the two WH domains of C34 span the polymerase cleft from the coiled-coil region of the clamp to the protrusion. The WH domains of C82 and C34 apparently cooperate with other mobile regions flanking the cleft during promoter DNA binding, opening, and loading. Together with published data, our results complete the subunit architecture of Pol III and indicate that all TFIIE-related components of eukaryotic and archaeal transcription systems adopt an evolutionarily conserved location in the upper part of the cleft that supports their functions in open promoter complex formation and stabilization

    Phase diagram of a Disordered Boson Hubbard Model in Two Dimensions

    Full text link
    We study the zero-temperature phase transition of a two-dimensional disordered boson Hubbard model. The phase diagram of this model is constructed in terms of the disorder strength and the chemical potential. Via quantum Monte Carlo simulations, we find a multicritical line separating the weak-disorder regime, where a random potential is irrelevant, from the strong-disorder regime. In the weak-disorder regime, the Mott-insulator-to-superfluid transition occurs, while, in the strong-disorder regime, the Bose-glass-to-superfluid transition occurs. On the multicritical line, the insulator-to-superfluid transition has the dynamical critical exponent z=1.35±0.05z=1.35 \pm 0.05 and the correlation length critical exponent ν=0.67±0.03\nu=0.67 \pm 0.03, that are different from the values for the transitions off the line. We suggest that the proliferation of the particle-hole pairs screens out the weak disorder effects.Comment: 4 pages, 4 figures, to be published in PR

    Monosodium iodoacetate-induced joint pain is associated with increased phosphorylation of mitogen activated protein kinases in the rat spinal cord

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intra-articular injection of monosodium iodoacetate (MIA) in the knee joint of rats disrupts chondrocyte metabolism resulting in cartilage degeneration and subsequent nociceptive behavior that has been described as a model of osteoarthritis (OA) pain. Central sensitization through activation of mitogen activated protein kinases (MAPKs) is recognized as a pathogenic mechanism in chronic pain. In the present studies, induction of central sensitization as indicated by spinal dorsal horn MAPK activation, specifically ERK and p38 phosphorylation, was assessed in the MIA-OA model.</p> <p>Results</p> <p>Behaviorally, MIA-injected rats displayed reduced hind limb grip force 1, 2, and 3 weeks post-MIA treatment. In the same animals, activation of phospho ERK1/2 was gradually increased, reaching a significant level at post injection week 3. Conversely, phosphorylation of p38 MAPK was enhanced maximally at post injection week 1 and decreased, but remained elevated, thereafter. Double labeling from 3-wk MIA rats demonstrated spinal pERK1/2 expression in neurons, but not glia. In contrast, p-p38 was expressed by microglia and a subpopulation of neurons, but not astrocytes. Additionally, there was increased ipsilateral expression of microglia, but not astrocytes, in 3-wk MIA-OA rats. Consistent with increased MAPK immunoreactivity in the contralateral dorsal horn, mechanical allodynia to the contralateral hind-limb was observed 3-wk following MIA. Finally, intrathecal injection of the MEK1 inhibitor PD98059 blocked both reduced hind-limb grip force and pERK1/2 induction in MIA-OA rats.</p> <p>Conclusion</p> <p>Results of these studies support the role of MAPK activation in the progression and maintenance of central sensitization in the MIA-OA experimental pain model.</p

    Power monitoring in a feedforward photonic network using two output detectors

    Get PDF
    Programmable feedforward photonic meshes of Mach-Zehnder interferometers are computational optical circuits that have many classical and quantum computing applications including machine learning, sensing, and telecommunications. Such devices can form the basis of energy-efficient photonic neural networks, which solve complex tasks using photonics-accelerated matrix multiplication on a chip, and which may require calibration and training mechanisms. Such training can benefit from internal optical power monitoring and physical gradient measurement for optimizing controllable phase shifts to maximize some task merit function. Here, we design and experimentally verify a new architecture capable of power monitoring any waveguide segment in a feedforward photonic circuit. Our scheme is experimentally realized by modulating phase shifters in a 6 x 6 triangular mesh silicon photonic chip, which can non-invasively (i.e., without any internal "power taps ") resolve optical powers in a 3 x 3 triangular mesh based on response measurements in only two output detectors. We measure roughly 3% average error over 1000 trials in the presence of systematic manufacturing and environmental drift errors and verify scalability of our procedure to more modes via simulation
    • …
    corecore