122 research outputs found

    Applications of Radio-Frequency Heating in Environmental Technology

    Get PDF
    AbstractDirect dielectric heating with radio-frequency (RF) electromagnetic fields is used to optimize a variety of processes in environmental technology, namely soil remediation by soil vapor extraction or biodegradation, adsorptive-catalytic off-gas treatment, thermal regeneration of drying agents in biogas or natural gas treatment and decontamination and/or drying of brickwork

    Co-Transport of Polycyclic Aromatic Hydrocarbons by Motile Microorganisms Leads to Enhanced Mass Transfer under Diffusive Conditions.

    Get PDF
    The environmental chemodynamics of hydrophobic organic chemicals (HOCs) are often rate-limited by diffusion in stagnant boundary layers. This study investigated whether motile microorganisms can act as microbial carriers that enhance mass transfer of HOCs through diffusive boundary layers. A new experimental system was developed that allows (1) generation of concentration gradients of HOCs under the microscope, (2) exposure and direct observation of microorganisms in such gradients, and (3) quantification of HOC mass transfer. Silicone O-rings were integrated into a Dunn chemotaxis chamber to serve as sink and source for polycyclic aromatic hydrocarbons (PAHs). This resulted in stable concentration gradients in water (>24 h). Adding the model organism <i>Tetrahymena pyriformis</i> to the experimental system enhanced PAH mass transfer up to hundred-fold (benzo­[a]­pyrene). Increasing mass transfer enhancement with hydrophobicity indicated PAH co-transport with the motile organisms. Fluorescence microscopy confirmed such transport. The effective diffusivity of <i>T. pyriformis</i>, determined by video imaging microscopy, was found to exceed molecular diffusivities of the PAHs up to four-fold. Cell-bound PAH fractions were determined to range from 28% (naphthalene) to 92% (pyrene). Motile microorganisms can therefore function as effective carriers for HOCs under diffusive conditions and might significantly enhance mobility and availability of HOCs

    Tamoxifen-Induced Cre-loxP Recombination Is Prolonged in Pancreatic Islets of Adult Mice

    Get PDF
    Tamoxifen (Tm)-inducible Cre recombinases are widely used to perform gene inactivation and lineage tracing studies in mice. Although the efficiency of inducible Cre-loxP recombination can be easily evaluated with reporter strains, the precise length of time that Tm induces nuclear translocation of CreERTm and subsequent recombination of a target allele is not well defined, and difficult to assess. To better understand the timeline of Tm activity in vivo, we developed a bioassay in which pancreatic islets with a Tm-inducible reporter (from Pdx1PB-CreERTm;R26RlacZ mice) were transplanted beneath the renal capsule of adult mice previously treated with three doses of 1 mg Tm, 8 mg Tm, or corn oil vehicle. Surprisingly, recombination in islet grafts, as assessed by expression of the β-galactosidase (β-gal) reporter, was observed days or weeks after Tm treatment, in a dose-dependent manner. Substantial recombination occurred in islet grafts long after administration of 3×8 mg Tm: in grafts transplanted 48 hours after the last Tm injection, 77.9±0.4% of β-cells were β-gal+; in β-cells placed after 1 week, 46.2±5.0% were β-gal+; after 2 weeks, 26.3±7.0% were β-gal+; and after 4 weeks, 1.9±0.9% were β-gal+. Islet grafts from mice given 3×1 mg Tm showed lower, but notable, recombination 48 hours (4.9±1.7%) and 1 week (4.5±1.9%) after Tm administration. These results show that Tm doses commonly used to induce Cre-loxP recombination may continue to label significant numbers of cells for weeks after Tm treatment, possibly confounding the interpretation of time-sensitive studies using Tm-dependent models. Therefore, investigators developing experimental approaches using Tm-inducible systems should consider both maximal recombination efficiency and the length of time that Tm-induced Cre-loxP recombination occurs

    Potencijalna upotreba izotopa važnih za okoliš u ispitivanju migracije onečišćujućih tvari

    Get PDF
    This article presents the use of natural abundance stable isotope (hydrogen, carbon, nitrogen, oxygen, chlorine) analysis data as a tool for providing important information about the origin of contaminants, the contribution of different sources to a multi-source plume, characterisation of their complex transport (rate and mechanisms) and for evaluating the success of contaminated site remediation. Isotopic signatures of contaminants are useful tracers of their sources, while isotopic fractionation can be used to quantitatively assess the progress of an environmental process such as biodegradation. This new isotopic approach is reliable and can offer more information than traditional techniques in pollutant migration studies, particularly after waste disposal. During biological degradation of any organic compound, molecules containing lighter isotopes are degraded, and the portion of heavier isotopes in the substrate is increased, identifying specific microbial roles in biogeochemical cycling. Since isotopic fractionation is proportional to degradation, depending on the type of contamination, a microbial degradation of 50 % to 99 % of the initial concentration can be quantified using isotope ratio measurements.Cilj ovog rada je da se prikaže korištenje podataka analize prirodne obilnosti stabilnih izotopa (vodika, ugljika, dušika, kisika i klora) kao alata za dobivanje važnih informacija o porijeklu onečišćujućih tvari, doprinosu različitih multikomponentnih onečišćivača, karakterizaciji njihova kompleksnog transporta (brzine i mehanizma) i praćenja uspjeha remedijacije onečišćenih mjesta. Izotopski sadržaji onečišćujućih tvari koriste se kao traseri za određivanje njihovih izvora, dok se izotopsko frakcioniranje može iskoristiti za kvantitativnu procjenu toka procesa kao što je biodegradacija. Takav nov izotopski pristup je pouzdan i nudi više informacija od tradicionalnih tehnika kontrole putovanja onečišćivala, napose nakon odlaganja opasnog otpada na zemljištu. Za vrijeme biodegradacije nekog organskog spoje molekule koje sadržavaju lake izotope lakše se degradiraju, a dio težih izotopa u supstratu se povećava, što upućuje na mikrobiološku ulogu u biokemijskom ciklusu. Kako je izotopsko frakcioniranje proporcionalno degradaciji zavisno od tipa onečišćenja, korištenjem podataka mjerenja izotopskih odnosa može se procijeniti mikrobiološka degradacija od 50 % do 99 % od početne koncentracije

    Gene Expression Profiles in Human and Mouse Primary Cells Provide New Insights into the Differential Actions of Vitamin D-3 Metabolites

    Get PDF
    1α,25-Dihydroxyvitamin D3 (1α,25(OH)2D3) had earlier been regarded as the only active hormone. The newly identified actions of 25-hydroxyvitamin D3 (25(OH)D3) and 24R,25-dihydroxyvitamin D3 (24R,25(OH)2D3) broadened the vitamin D3 endocrine system, however, the current data are fragmented and a systematic understanding is lacking. Here we performed the first systematic study of global gene expression to clarify their similarities and differences. Three metabolites at physiologically comparable levels were utilized to treat human and mouse fibroblasts prior to DNA microarray analyses. Human primary prostate stromal P29SN cells (hP29SN), which convert 25(OH)D3 into 1α,25(OH)2D3 by 1α-hydroxylase (encoded by the gene CYP27B1), displayed regulation of 164, 171, and 175 genes by treatment with 1α,25(OH)2D3, 25(OH)D3, and 24R,25(OH)2D3, respectively. Mouse primary Cyp27b1 knockout fibroblasts (mCyp27b1−/−), which lack 1α-hydroxylation, displayed regulation of 619, 469, and 66 genes using the same respective treatments. The number of shared genes regulated by two metabolites is much lower in hP29SN than in mCyp27b1−/−. By using DAVID Functional Annotation Bioinformatics Microarray Analysis tools and Ingenuity Pathways Analysis, we identified the agonistic regulation of calcium homeostasis and bone remodeling between 1α,25(OH)2D3 and 25(OH)D3 and unique non-classical actions of each metabolite in physiological and pathological processes, including cell cycle, keratinocyte differentiation, amyotrophic lateral sclerosis signaling, gene transcription, immunomodulation, epigenetics, cell differentiation, and membrane protein expression. In conclusion, there are three distinct vitamin D3 hormones with clearly different biological activities. This study presents a new conceptual insight into the vitamin D3 endocrine system, which may guide the strategic use of vitamin D3 in disease prevention and treatment.Peer reviewe

    Some mistakes and misinterpretations in the analysis of thermodynamic adsorption data

    No full text
    In this work, we discuss some results and statements recently published in the scientific adsorption literature. In particular, we focus on the thermodynamic aspects of the adsorption process, including dimensional inconsistency of fitted parameters, Temkin isotherm assumptions, inaccurate calculation of ΔH° and ΔS°, parameter determination without providing the errors of estimate, mismatch between selected isotherm models and isosteric heat of adsorption, misleading interpretation of the spontaneity of a process, and interchangeability of ΔG and ΔG°. A graphical method is proposed for assessing data reliability and applicability of the van't Hoff equation
    corecore