18 research outputs found
A21 HIV-1 sub-subtype F1 outbreak among MSM in Belgium
publishersversionpublishe
Earlier initiation of antiretroviral treatment coincides with an initial control of the HIV-1 sub-subtype F1 outbreak among men-having-sex-with-men in Flanders, Belgium
Human immunodeficiency virus type 1 (HIV-1) non-B subtype infections occurred in Belgium since the 1980s, mainly amongst migrants and heterosexuals, whereas subtype B predominated in men-having-sex-with-men (MSM). In the last decade, the diagnosis of F1 sub-subtype in particular has increased substantially, which prompted us to perform a detailed reconstruction of its epidemiological history. To this purpose, the Belgian AIDS Reference Laboratories collected HIV-1 pol sequences from all sub-subtype F1-infected patients for whom genotypic drug resistance testing was requested as part of routine clinical follow-up. This data was complemented with HIV-1 pol sequences from countries with a high burden of F1 infections or a potential role in the global origin of sub-subtype F1. The molecular epidemiology of the Belgian subtype F1 epidemic was investigated using Bayesian phylogenetic inference and transmission dynamics were characterized based on birth-death models. F1 sequences were retained from 297 patients diagnosed and linked to care in Belgium between 1988 and 2015. Phylogenetic inference indicated that among the 297 Belgian F1 sequences, 191 belonged to a monophyletic group that mainly contained sequences from people likely infected in Belgium (OR 26.67, 95% CI 9.59-74.15), diagnosed in Flanders (OR 7.28, 95% CI 4.23-12.53), diagnosed at a recent stage of infection (OR 7.19, 95% CI 2.88-17.95) or declared to be MSM (OR 34.8, 95% CI 16.0-75.6). Together with a Spanish clade, this Belgian clade was embedded in the genetic diversity of Brazilian subtype F1 strains and most probably emerged after one or only a few migration events from Brazil to the European continent before 2002. The origin of the Belgian outbreak was dated back to 2002 (95% higher posterior density 2000-2004) and birth-death models suggested that its extensive growth had been controlled (Re < 1) by 2012, coinciding with a time period where delay in antiretroviral treatment initiation substantially declined. In conclusion, phylogenetic reconstruction of the Belgian HIV-1 sub-subtype F1 epidemic illustrates the introduction and substantial dissemination of viral strains in a geographically restricted risk group that was most likely controlled by effective treatment as prevention.publishersversionpublishe
Effect of zoledronic acid on the doxycycline-induced decrease in tumour burden in a bone metastasis model of human breast cancer
Bone is one of the most frequent sites for metastasis in breast cancer patients often resulting in significant clinical morbidity and mortality. Bisphosphonates are currently the standard of care for breast cancer patients with bone metastasis. We have shown previously that doxycycline, a member of the tetracycline family of antibiotics, reduces total tumour burden in an experimental bone metastasis mouse model of human breast cancer. In this study, we combined doxycycline treatment together with zoledronic acid, the most potent bisphosphonate. Drug administration started 3 days before the injection of the MDA-MB-231 cells. When mice were administered zoledronic acid alone, the total tumour burden decreased by 43% compared to placebo treatment. Administration of a combination of zoledronic acid and doxycycline resulted in a 74% decrease in total tumour burden compared to untreated mice. In doxycycline- and zoledronate-treated mice bone formation was significantly enhanced as determined by increased numbers of osteoblasts, osteoid surface and volume, whereas a decrease in bone resorption was also observed. Doxycycline greatly reduced tumour burden and could also compensate for the increased bone resorption. The addition of zoledronate to the regimen further decreased tumour burden, caused an extensive decrease in bone-associated soft tissue tumour burden (93%), and sustained the bone volume, which could result in a smaller fracture risk. Treatment with zoledronic acid in combination with doxycycline may be very beneficial for breast cancer patients at risk for osteolytic bone metastasis
Bigger and Better? Representativeness of the Influenza A Surveillance Using One Consolidated Clinical Microbiology Laboratory Data Set as Compared to the Belgian Sentinel Network of Laboratories.
Infectious diseases remain a serious public health concern globally, while the need for reliable and representative surveillance systems remains as acute as ever. The public health surveillance of infectious diseases uses reported positive results from sentinel clinical laboratories or laboratory networks, to survey the presence of specific microbial agents known to constitute a threat to public health in a given population. This monitoring activity is commonly based on a representative fraction of the microbiology laboratories nationally reporting to a single central reference point. However, in recent years a number of clinical microbiology laboratories (CML) have undergone a process of consolidation involving a shift toward laboratory amalgamation and closer real-time informational linkage. This report aims to investigate whether such merging activities might have a potential impact on infectious diseases surveillance. Influenza data was used from Belgian public health surveillance 2014-2017, to evaluate whether national infection trends could be estimated equally as effectively from only just one centralized CML serving the wider Brussels area (LHUB-ULB). The overall comparison reveals that there is a close correlation and representativeness of the LHUB-ULB data to the national and international data for the same time periods, both on epidemiological and molecular grounds. Notably, the effectiveness of the LHUB-ULB surveillance remains partially subject to local regional variations. A subset of the Influenza samples had their whole genome sequenced so that the observed epidemiological trends could be correlated to molecular observations from the same period, as an added-value proposition. These results illustrate that the real-time integration of high-throughput whole genome sequencing platforms available in consolidated CMLs into the public health surveillance system is not only credible but also advantageous to use for future surveillance and prediction purposes. This can be most effective when implemented for automatic detection systems that might include multiple layers of information and timely implementation of control strategies.</p
Earlier initiation of antiretroviral treatment coincides with an initial control of the HIV-1 sub-subtype F1 outbreak among men-having-sex-with-men in Flanders, Belgium
Human immunodeficiency virus type 1 (HIV-1) non-B subtype infections occurred in Belgium since the 1980s, mainly amongst migrants and heterosexuals, whereas subtype B predominated in men-having-sex-with-men (MSM). In the last decade, the diagnosis of F1 sub-subtype in particular has increased substantially, which prompted us to perform a detailed reconstruction of its epidemiological history. To this purpose, the Belgian AIDS Reference Laboratories collected HIV-1 pol sequences from all subsubtype F1-infected patients for whom genotypic drug resistance testing was requested as part of routine clinical follow-up. This data was complemented with HIV-1 pol sequences from countries with a high burden of F1 infections or a potential role in the global origin of sub-subtype F1. The molecular epidemiology of the Belgian subtype F1 epidemic was investigated using Bayesian phylogenetic inference and transmission dynamics were characterized based on birth-death models. F1 sequences were retained from 297 patients diagnosed and linked to care in Belgium between 1988 and 2015. Phylogenetic inference indicated that among the 297 Belgian F1 sequences, 191 belonged to a monophyletic group that mainly contained sequences from people likely infected in Belgium (OR 26.67, 95% CI 9.59-74.15), diagnosed in Flanders (OR 7.28, 95% CI 4.23-12.53), diagnosed at a recent stage of infection (OR 7.19, 95% CI 2.88-17.95) or declared to be MSM (OR 34.8, 95% CI 16.0-75.6). Together with a Spanish clade, this Belgian clade was embedded in the genetic diversity of Brazilian subtype F1 strains and most probably emerged after one or only a few migration events from Brazil to the European continent before 2002. The origin of the Belgian outbreak was dated back to 2002 (95% higher posterior density 2000-2004) and birth-death models suggested that its extensive growth had been controlled (R-e < 1) by 2012, coinciding with a time period where delay in antiretroviral treatment initiation substantially declined. In conclusion, phylogenetic reconstruction of the Belgian HIV-1 sub-subtype F1 epidemic illustrates the introduction and substantial dissemination of viral strains in a geographically restricted risk group that was most likely controlled by effective treatment as prevention
Earlier initiation of antiretroviral treatment coincides with an initial control of the HIV-1 sub-subtype F1 outbreak among men-having-sex-with-men in Flanders, Belgium
Human immunodeficiency virus type 1 (HIV-1) non-B subtype infections occurred in Belgium since the 1980s, mainly amongst migrants and heterosexuals, whereas subtype B predominated in men-having-sex-with-men (MSM). In the last decade, the diagnosis of F1 sub-subtype in particular has increased substantially, which prompted us to perform a detailed reconstruction of its epidemiological history. To this purpose, the Belgian AIDS Reference Laboratories collected HIV-1 pol sequences from all sub-subtype F1-infected patients for whom genotypic drug resistance testing was requested as part of routine clinical follow-up. This data was complemented with HIV-1 pol sequences from countries with a high burden of F1 infections or a potential role in the global origin of sub-subtype F1. The molecular epidemiology of the Belgian subtype F1 epidemic was investigated using Bayesian phylogenetic inference and transmission dynamics were characterized based on birth-death models. F1 sequences were retained from 297 patients diagnosed and linked to care in Belgium between 1988 and 2015. Phylogenetic inference indicated that among the 297 Belgian F1 sequences, 191 belonged to a monophyletic group that mainly contained sequences from people likely infected in Belgium (OR 26.67, 95% CI 9.59-74.15), diagnosed in Flanders (OR 7.28, 95% CI 4.23-12.53), diagnosed at a recent stage of infection (OR 7.19, 95% CI 2.88-17.95) or declared to be MSM (OR 34.8, 95% CI 16.0-75.6). Together with a Spanish clade, this Belgian clade was embedded in the genetic diversity of Brazilian subtype F1 strains and most probably emerged after one or only a few migration events from Brazil to the European continent before 2002. The origin of the Belgian outbreak was dated back to 2002 (95% higher posterior density 2000-2004) and birth-death models suggested that its extensive growth had been controlled (R < 1) by 2012, coinciding with a time period where delay in antiretroviral treatment initiation substantially declined. In conclusion, phylogenetic reconstruction of the Belgian HIV-1 sub-subtype F1 epidemic illustrates the introduction and substantial dissemination of viral strains in a geographically restricted risk group that was most likely controlled by effective treatment as prevention