45 research outputs found

    Repeated freeze–thaw cycles reduce the survival rate of osteocytes in bone-tendon constructs without affecting the mechanical properties of tendons

    Get PDF
    Frozen bone-patellar tendon bone allografts are useful in anterior cruciate ligament reconstruction as the freezing procedure kills tissue cells, thereby reducing immunogenicity of the grafts. However, a small portion of cells in human femoral heads treated by standard bone-bank freezing procedures survive, thus limiting the effectiveness of allografts. Here, we characterized the survival rates and mechanisms of cells isolated from rat bones and tendons that were subjected to freeze–thaw treatments, and evaluated the influence of these treatments on the mechanical properties of tendons. After a single freeze–thaw cycle, most cells isolated from frozen bone appeared morphologically as osteocytes and expressed both osteoblast- and osteocyte-related genes. Transmission electron microscopic observation of frozen cells using freeze-substitution revealed that a small number of osteocytes maintained large nuclei with intact double membranes, indicating that these osteocytes in bone matrix were resistant to ice crystal formation. We found that tendon cells were completely killed by a single freeze–thaw cycle, whereas bone cells exhibited a relatively high survival rate, although survival was significantly reduced after three freeze–thaw cycles. In patella tendons, the ultimate stress, Young’s modulus, and strain at failure showed no significant differences between untreated tendons and those subjected to five freeze–thaw cycles. In conclusion, we identified that cells surviving after freeze–thaw treatment of rat bones were predominantly osteocytes. We propose that repeated freeze–thaw cycles could be applied for processing bone-tendon constructs prior to grafting as the treatment did not affect the mechanical property of tendons and drastically reduced surviving osteocytes, thereby potentially decreasing allograft immunogenecity

    Generation of a reference transcriptome for evaluating rainbow trout responses to various stressors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fish under intensive culture conditions are exposed to a variety of acute and chronic stressors, including high rearing densities, sub-optimal water quality, and severe thermal fluctuations. Such stressors are inherent in aquaculture production and can induce physiological responses with adverse effects on traits important to producers and consumers, including those associated with growth, nutrition, reproduction, immune response, and fillet quality. Understanding and monitoring the biological mechanisms underlying stress responses will facilitate alleviating their negative effects through selective breeding and changes in management practices, resulting in improved animal welfare and production efficiency.</p> <p>Results</p> <p>Physiological responses to five treatments associated with stress were characterized by measuring plasma lysozyme activity, glucose, lactate, chloride, and cortisol concentrations, in addition to stress-associated transcripts by quantitative PCR. Results indicate that the fish had significant stressor-specific changes in their physiological conditions. Sequencing of a pooled normalized transcriptome library created from gill, brain, liver, spleen, kidney and muscle RNA of control and stressed fish produced 3,160,306 expressed sequence tags which were assembled and annotated. SNP discovery resulted in identification of ~58,000 putative single nucleotide polymorphisms including 24,479 which were predicted to fall within exons. Of these, 4907 were predicted to occupy the first position of a codon and 4110 the second, increasing the probability to impact amino acid sequence variation and potentially gene function.</p> <p>Conclusion</p> <p>We have generated and characterized a reference transcriptome for rainbow trout that represents multiple tissues responding to multiple stressors common to aquaculture production environments. This resource compliments existing public transcriptome data and will facilitate approaches aiming to evaluate gene expression associated with stress in this species.</p

    No influence of oxygen levels on pathogenesis and virus shedding in Salmonid alphavirus (SAV)-challenged Atlantic salmon (Salmo salar L.)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>For more than three decades, diseases caused by salmonid alphaviruses (SAV) have become a major problem of increasing economic importance in the European fish-farming industry. However, experimental infection trials with SAV result in low or no mortality i.e very different from most field outbreaks of pancreas disease (PD). This probably reflects the difficulties in reproducing complex biotic and abiotic field conditions in the laboratory. In this study we looked at the relationship between SAV-infection in salmon and sub-lethal environmental hypoxia as a result of reduced flow-through in tank systems.</p> <p>Results</p> <p>The experiment demonstrated that constant reduced oxygen levels (60-65% oxygen saturation: 6.5-7.0 mg/L) did not significantly increase the severity or the progress of pancreas disease (PD). These conclusions are based upon assessments of a semi-quantitative histopathological lesion score system, morbidities/mortalities, and levels of SAV RNA in tissues and water (measured by 1 MDS electropositive virus filters and downstream real-time RT-PCR). Furthermore, we demonstrate that the fish population shed detectable levels of the virus into the surrounding water during viraemia; 4-13 days after i.p. infection, and prior to appearance of severe lesions in heart (21-35 dpi). After this period, viral RNA from SAV could not be detected in water samples although still present in tissues (gills and hearts) at lasting low levels. Lesions could be seen in exocrine pancreas at 7-21 days post infection, but no muscle lesions were seen.</p> <p>Conclusions</p> <p>In our study, experimentally induced hypoxia failed to explain the discrepancy between the severities reported from field outbreaks of SAV-disease and experimental infections. Reduction of oxygen levels to constant suboptimal levels had no effect on the severity of lesions caused by SAV-infection or the progress of the disease. Furthermore, we present a modified VIRADEL method which can be used to detect virus in water and to supplement experimental infection trials with information related to viral shedding. By using this method, we were able to demonstrate for the first time that shedding of SAV from the fish population into the surrounding water coincides with viraemia.</p

    Lrp5 Is Not Required for the Proliferative Response of Osteoblasts to Strain but Regulates Proliferation and Apoptosis in a Cell Autonomous Manner

    Get PDF
    Although Lrp5 is known to be an important contributor to the mechanisms regulating bone mass, its precise role remains unclear. The aim of this study was to establish whether mutations in Lrp5 are associated with differences in the growth and/or apoptosis of osteoblast-like cells and their proliferative response to mechanical strain in vitro. Primary osteoblast-like cells were derived from cortical bone of adult mice lacking functional Lrp5 (Lrp5βˆ’/βˆ’), those heterozygous for the human G171V High Bone Mass (HBM) mutation (LRP5G171V) and their WT littermates (WTLrp5, WTHBM). Osteoblast proliferation over time was significantly higher in cultures of cells from LRP5G171V mice compared to their WTHBM littermates, and lower in Lrp5βˆ’/βˆ’ cells. Cells from female LRP5G171V mice grew more rapidly than those from males, whereas cells from female Lrp5βˆ’/βˆ’ mice grew more slowly than those from males. Apoptosis induced by serum withdrawal was significantly higher in cultures from Lrp5βˆ’/βˆ’ mice than in those from WTHBM or LRP5G171V mice. Exposure to a single short period of dynamic mechanical strain was associated with a significant increase in cell number but this response was unaffected by genotype which also did not change the β€˜threshold’ at which cells responded to strain. In conclusion, the data presented here suggest that Lrp5 loss and gain of function mutations result in cell-autonomous alterations in osteoblast proliferation and apoptosis but do not alter the proliferative response of osteoblasts to mechanical strain in vitro

    A Novel Soluble Immune-Type Receptor (SITR) in Teleost Fish: Carp SITR Is Involved in the Nitric Oxide-Mediated Response to a Protozoan Parasite

    Get PDF
    Background- The innate immune system relies upon a wide range of germ-line encoded receptors including a large number of immunoglobulin superfamily (IgSF) receptors. Different Ig-like immune receptor families have been reported in mammals, birds, amphibians and fish. Most innate immune receptors of the IgSF are type I transmembrane proteins containing one or more extracellular Ig-like domains and their regulation of effector functions is mediated intracellularly by distinct stimulatory or inhibitory pathways. Methodology/Principal Findings - Carp SITR was found in a substracted cDNA repertoire from carp macrophages, enriched for genes up-regulated in response to the protozoan parasite Trypanoplasma borreli. Carp SITR is a type I protein with two extracellular Ig domains in a unique organisation of a N-proximal V/C2 (or I-) type and a C-proximal V-type Ig domain, devoid of a transmembrane domain or any intracytoplasmic signalling motif. The carp SITR C-proximal V-type Ig domain, in particular, has a close sequence similarity and conserved structural characteristics to the mammalian CD300 molecules. By generating an anti-SITR antibody we could show that SITR protein expression was restricted to cells of the myeloid lineage. Carp SITR is abundantly expressed in macrophages and is secreted upon in vitro stimulation with the protozoan parasite T. borreli. Secretion of SITR protein during in vivo T. borreli infection suggests a role for this IgSF receptor in the host response to this protozoan parasite. Overexpression of carp SITR in mouse macrophages and knock-down of SITR protein expression in carp macrophages, using morpholino antisense technology, provided evidence for the involvement of carp SITR in the parasite-induced NO production. Conclusion/Significance - We report the structural and functional characterization of a novel soluble immune-type receptor (SITR) in a teleost fish and propose a role for carp SITR in the NO-mediated response to a protozoan parasite

    Rechtskeuze en internationale contractsvrijheid

    No full text
    corecore