12 research outputs found

    Placental expression of adenosine A2A receptor and hypoxia inducible factor-1 alpha in early pregnancy, term and pre-eclamptic pregnancies: interactions with placental renin-angiotensin system

    Get PDF
    Normal placentation occurs under low oxygen tensions yet hypoxia is also implicated in placental pathologies such as pre-eclampsia (PE). Hypoxia-inducible factors (HIFs), adenosine and tissue renin-angiotensin-system (RAS) are known to promote angiogenesis and vascularisation. We hypothesised that placental adenosine A2AR receptor and HIF-1α would change through pregnancy in association with the RAS. Placentae were obtained from women undergoing elective surgical termination of pregnancy (TOP) at ≤10 weeks’ (early TOP) and >10 weeks’ (mid TOP) gestations; at delivery from normotensive (NT) and PE pregnancy. Results were compared to our previously reported data on the angiotensin receptors: AT1R, AT2R and AT4R. Protein expression of both A2AR and HIF-1α was highest in early TOP and positively correlated through pregnancy (P<0.0001): expression was higher in PE than NT at delivery (P<0.0001 for both). The A2AR positively correlated with the AT4R in placentae in early pregnancy (r=0.53; P=0.035), but not in 3rd trimester samples. Our findings suggest a role for adenosine and RAS in promoting placentation and as a potential adaptation to poor placental perfusion in pre-eclampsia

    Vitamin D prevents endothelial progenitor cell dysfunction induced by sera from women with preeclampsia or conditioned media from hypoxic placenta

    Get PDF
    Context: Placenta-derived circulating factors contribute to the maternal endothelial dysfunction underlying preeclampsia. Endothelial colony forming cells (ECFC), a sub-population of endothelial progenitor cells (EPCs), are thought to be involved in vasculogenesis and endothelial repair. Low vitamin D concentrations are associated with an increased risk for preeclampsia. Objective: We hypothesized that the function of human fetal ECFCs in culture would be suppressed by exposure to preeclampsia-related factors-preeclampsia serum or hypoxic placental conditioned medium- in a fashion reversed by vitamin D. Design, Setting, Patients: ECFCs were isolated from cord blood of uncomplicated pregnancies and expanded in culture. Uncomplicated pregnancy villous placenta in explant culture were exposed to either 2% (hypoxic), 8% (normoxic) or 21% (hyperoxic) O2 for 48 h, after which the conditioned media (CM) was collected. Outcome Measures: ECFC tubule formation (Matrigel assay) and migration were examined in the presence of either maternal serum from preeclampsia cases or uncomplicated pregnancy controls, or pooled CM, in the presence or absence of 1,25(OH)2 vitamin D3. Results: 1,25(OH)2 vitamin D3 reversed the adverse effects of preeclampsia serum or CM from hypoxic placenta on ECFCs capillary-tube formation and migration. Silencing of VDR expression by VDR siRNA, VDR blockade, or VEGF pathway blockade reduced ECFC functional abilities. Effects of VDR or VEGF blockade were partially prevented by vitamin D. Conclusion: Vitamin D promotes the capillary-like tubule formation and migration of ECFCs in culture, minimizing the negative effects of exposure to preeclampsia-related factors. Further evaluation of the role of vitamin D in ECFC regulation and preeclampsia is warranted. © 2014 Brodowski et al

    Caffeine Reduces 11β-Hydroxysteroid Dehydrogenase Type 2 Expression in Human Trophoblast Cells through the Adenosine A2B Receptor

    Get PDF
    Maternal caffeine consumption is associated with reduced fetal growth, but the underlying molecular mechanisms are unknown. Since there is evidence that decreased placental 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) is linked to fetal growth restriction, we hypothesized that caffeine may inhibit fetal growth partly through down regulating placental 11β-HSD2. As a first step in examining this hypothesis, we studied the effects of caffeine on placental 11β-HSD2 activity and expression using our established primary human trophoblast cells as an in vitro model system. Given that maternal serum concentrations of paraxanthine (the primary metabolite of caffeine) were greater in women who gave birth to small-for-gestational age infants than to appropriately grown infants, we also studied the effects of paraxanthine. Our main findings were: (1) both caffeine and paraxanthine decreased placental 11β-HSD2 activity, protein and mRNA in a concentration-dependent manner; (2) this inhibitory effect was mediated by the adenosine A2B receptor, since siRNA-mediated knockdown of this receptor prevented caffeine- and paraxanthine-induced inhibition of placental 11β-HSD2; and (3) forskolin (an activator of adenyl cyclase and a known stimulator of 11β-HSD2) abrogated the inhibitory effects of both caffeine and paraxanthine, which provides evidence for a functional link between exposure to caffeine and paraxanthine, decreased intracellular levels of cAMP and reduced placental 11β-HSD2. Taken together, these findings reveal that placental 11β-HSD2 is a novel molecular target through which caffeine may adversely affect fetal growth. They also uncover a previously unappreciated role for the adenosine A2B receptor signaling in regulating placental 11β-HSD2, and consequently fetal development
    corecore