540 research outputs found
Protein co-evolution, co-adaptation and interactions
Co-evolution has an important function in the evolution of species and it is clearly manifested in certain scenarios such as host–parasite and predator–prey interactions, symbiosis and mutualism. The extrapolation of the concepts and methodologies developed for the study of species co-evolution at the molecular level has prompted the development of a variety of computational methods able to predict protein interactions through the characteristics of co-evolution. Particularly successful have been those methods that predict interactions at the genomic level based on the detection of pairs of protein families with similar evolutionary histories (similarity of phylogenetic trees: mirrortree). Future advances in this field will require a better understanding of the molecular basis of the co-evolution of protein families. Thus, it will be important to decipher the molecular mechanisms underlying the similarity observed in phylogenetic trees of interacting proteins, distinguishing direct specific molecular interactions from other general functional constraints. In particular, it will be important to separate the effects of physical interactions within protein complexes (‘co-adaptation') from other forces that, in a less specific way, can also create general patterns of co-evolution
Red Queen Coevolution on Fitness Landscapes
Species do not merely evolve, they also coevolve with other organisms.
Coevolution is a major force driving interacting species to continuously evolve
ex- ploring their fitness landscapes. Coevolution involves the coupling of
species fit- ness landscapes, linking species genetic changes with their
inter-specific ecological interactions. Here we first introduce the Red Queen
hypothesis of evolution com- menting on some theoretical aspects and empirical
evidences. As an introduction to the fitness landscape concept, we review key
issues on evolution on simple and rugged fitness landscapes. Then we present
key modeling examples of coevolution on different fitness landscapes at
different scales, from RNA viruses to complex ecosystems and macroevolution.Comment: 40 pages, 12 figures. To appear in "Recent Advances in the Theory and
Application of Fitness Landscapes" (H. Richter and A. Engelbrecht, eds.).
Springer Series in Emergence, Complexity, and Computation, 201
Join forces or cheat: evolutionary analysis of a consumer-resource system
International audienceIn this contribution we consider a seasonal consumer-resource system and focus on the evolution of consumer behavior. It is assumed that consumer and resource individuals live and interact during seasons of fixed lengths separated by winter periods. All individuals die at the end of the season and the size of the next generation is determined by the the consumer-resource interaction which took place during the season. Resource individuals are assumed to reproduce at a constant rate, while consumers have to trade-off between foraging for resources, which increases their reproductive abilities, or reproducing. Firstly, we assume that consumers cooperate in such a way that they maximize each consumer's individual fitness. Secondly, we consider the case where such a population is challenged by selfish mutants who do not cooperate. Finally we study the system dynamics over many seasons and show that mutants eventually replace the original cooperating population, but are finally as vulnerable as the initial cooperating consumers
Multiplexed imaging of human tuberculosis granulomas uncovers immunoregulatory features conserved across tissue and blood
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis that is distinctly characterized by granuloma formation within infected tissues. Granulomas are dynamic and organized immune cell aggregates that limit dissemination, but can also hinder bacterial clearance. Consequently, outcome in TB is influenced by how granuloma structure and composition shift the balance between these two functions. To date, our understanding of what factors drive granuloma function in humans is limited. With this in mind, we used Multiplexed Ion Beam Imaging by Time-of-Flight (MIBI-TOF) to profile 37 proteins in tissues from thirteen patients with active TB disease from the U.S. and South Africa. With this dataset, we constructed a comprehensive tissue atlas where the lineage, functional state, and spatial distribution of 19 unique cell subsets were mapped onto eight phenotypically-distinct granuloma microenvironments. This work revealed an immunosuppressed microenvironment specific to TB granulomas with spatially coordinated co-expression of IDO1 and PD-L1 by myeloid cells and proliferating regulatory T cells. Interestingly, this microenvironment lacked markers consistent with T-cell activation, supporting a myeloid-mediated mechanism of immune suppression. We observed similar trends in gene expression of immunoregulatory proteins in a confirmatory transcriptomic analysis of peripheral blood collected from over 1500 individuals with latent or active TB infection and healthy controls across 29 cohorts spanning 14 countries. Notably, PD-L1 gene expression was found to correlate with TB progression and treatment response, supporting its potential use as a blood-based biomarker. Taken together, this study serves as a framework for leveraging independent cohorts and complementary methodologies to understand how local and systemic immune responses are linked in human health and disease
Multiplexed imaging of human tuberculosis granulomas uncovers immunoregulatory features conserved across tissue and blood
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis that is distinctly characterized by granuloma formation within infected tissues. Granulomas are dynamic and organized immune cell aggregates that limit dissemination, but can also hinder bacterial clearance. Consequently, outcome in TB is influenced by how granuloma structure and composition shift the balance between these two functions. To date, our understanding of what factors drive granuloma function in humans is limited. With this in mind, we used Multiplexed Ion Beam Imaging by Time-of-Flight (MIBI-TOF) to profile 37 proteins in tissues from thirteen patients with active TB disease from the U.S. and South Africa. With this dataset, we constructed a comprehensive tissue atlas where the lineage, functional state, and spatial distribution of 19 unique cell subsets were mapped onto eight phenotypically-distinct granuloma microenvironments. This work revealed an immunosuppressed microenvironment specific to TB granulomas with spatially coordinated co-expression of IDO1 and PD-L1 by myeloid cells and proliferating regulatory T cells. Interestingly, this microenvironment lacked markers consistent with T-cell activation, supporting a myeloid-mediated mechanism of immune suppression. We observed similar trends in gene expression of immunoregulatory proteins in a confirmatory transcriptomic analysis of peripheral blood collected from over 1500 individuals with latent or active TB infection and healthy controls across 29 cohorts spanning 14 countries. Notably, PD-L1 gene expression was found to correlate with TB progression and treatment response, supporting its potential use as a blood-based biomarker. Taken together, this study serves as a framework for leveraging independent cohorts and complementary methodologies to understand how local and systemic immune responses are linked in human health and disease
PI3K/AKT is involved in mediating survival signals that rescue Ewing tumour cells from fibroblast growth factor 2-induced cell death
While in vitro studies had shown that fibroblast growth factor 2 (FGF2) can induce cell death in Ewing tumours, it remained unclear how Ewing tumour cells survive in vivo within a FGF2-rich microenvironment. Serum- and integrin-mediated survival signals were, therefore, studied in adherent monolayer and anchorage-independent colony cell cultures. In a panel of Ewing tumour cell lines, either adhesion to collagen or exposure to serum alone only had a minor protective effect against FGF2. However, both combined led to complete resistance to 5 ng ml−1 FGF2 in three of four FGF2-sensitive cell lines (RD-ES, RM-82 and WE-68), and to an increased survival as compared to other culture conditions in TC-71 cells. Inhibition studies with LY294002 demonstrated that the serum signal is mediated via the phosphoinositide 3-OH kinase/AKT pathway. Thus, Ewing tumour cells escape FGF2-induced cell death by modulating FGF2 signalling. The tumour microenvironment provides the necessary survival signals by integrin-mediated adhesion and soluble serum factor(s). These survival signals warrant further investigation as a potential resistance mechanism to other apoptosis-inducing agents in vivo
Coevolution of amino acid residues in the key photosynthetic enzyme Rubisco
<p>Abstract</p> <p>Background</p> <p>One of the key forces shaping proteins is coevolution of amino acid residues. Knowing which residues coevolve in a particular protein may facilitate our understanding of protein evolution, structure and function, and help to identify substitutions that may lead to desired changes in enzyme kinetics. Rubisco, the most abundant enzyme in biosphere, plays an essential role in the process of carbon fixation through photosynthesis, thus facilitating life on Earth. This makes Rubisco an important model system for studying the dynamics of protein fitness optimization on the evolutionary landscape. In this study we investigated the selective and coevolutionary forces acting on large subunit of land plants Rubisco using Markov models of codon substitution and clustering approaches applied to amino acid substitution histories.</p> <p>Results</p> <p>We found that both selection and coevolution shape Rubisco, and that positively selected and coevolving residues have their specifically favored amino acid composition and pairing preference. The mapping of these residues on the known Rubisco tertiary structures showed that the coevolving residues tend to be in closer proximity with each other compared to the background, while positively selected residues tend to be further away from each other. This study also reveals that the residues under positive selection or coevolutionary force are located within functionally important regions and that some residues are targets of both positive selection and coevolution at the same time.</p> <p>Conclusion</p> <p>Our results demonstrate that coevolution of residues is common in Rubisco of land plants and that there is an overlap between coevolving and positively selected residues. Knowledge of which Rubisco residues are coevolving and positively selected could be used for further work on structural modeling and identification of substitutions that may be changed in order to improve efficiency of this important enzyme in crops.</p
Conformational adaptation of Asian macaque TRIMCyp directs lineage specific antiviral activity
TRIMCyps are anti-retroviral proteins that have arisen independently in New World and Old World primates. All TRIMCyps comprise a CypA domain fused to the tripartite domains of TRIM5α but they have distinct lentiviral specificities, conferring HIV-1 restriction in New World owl monkeys and HIV-2 restriction in Old World rhesus macaques. Here we provide evidence that Asian macaque TRIMCyps have acquired changes that switch restriction specificity between different lentiviral lineages, resulting in species-specific alleles that target different viruses. Structural, thermodynamic and viral restriction analysis suggests that a single mutation in the Cyp domain, R69H, occurred early in macaque TRIMCyp evolution, expanding restriction specificity to the lentiviral lineages found in African green monkeys, sooty mangabeys and chimpanzees. Subsequent mutations have enhanced restriction to particular viruses but at the cost of broad specificity. We reveal how specificity is altered by a scaffold mutation, E143K, that modifies surface electrostatics and propagates conformational changes into the active site. Our results suggest that lentiviruses may have been important pathogens in Asian macaques despite the fact that there are no reported lentiviral infections in current macaque populations
The immunoregulatory landscape of human tuberculosis granulomas.
Tuberculosis (TB) in humans is characterized by formation of immune-rich granulomas in infected tissues, the architecture and composition of which are thought to affect disease outcome. However, our understanding of the spatial relationships that control human granulomas is limited. Here, we used multiplexed ion beam imaging by time of flight (MIBI-TOF) to image 37 proteins in tissues from patients with active TB. We constructed a comprehensive atlas that maps 19 cell subsets across 8 spatial microenvironments. This atlas shows an IFN-γ-depleted microenvironment enriched for TGF-β, regulatory T cells and IDO
- …