7,349 research outputs found

    Swift Highly Charged Ion Channelling

    Full text link
    We review recent experimental and theoretical progress made in the scope of swift highly charged ion channelling in crystals. The usefulness of such studies is their ability to yield impact parameter information on charge transfer processes, and also on some time related problems. We discuss the cooling and heating phenomena at MeV/u energies, results obtained with decelerated H-like ion beams at GSI and with ions having an excess of electrons at GANIL, the superdensity effect along atomic strings and Resonant Coherent Excitation.Comment: to be published in Journal of Physics

    Investigation of ion induced bending mechanism for nanostructures

    Get PDF
    Ion induced bending is a promising controlled technique for manipulating nanoscale structures. However, the underlying mechanism of the process is not well understood. In this letter, we report a detailed study of the bending mechanism of Si nanowires (NWs) under Ga+ irradiation. The microstructural changes in the NW due to ion beam irradiation are studied and molecular dynamics simulations are used to explore the ion–NW interaction processes. The simulation results are compared with the microstructural studies of the NW. The investigations inform a generic understanding of the bending process in crystalline materials, which we suggest to be feasible as a versatile manipulation and integration technique in nanotechnology

    Gaps and tails in graphene and graphane

    Get PDF
    We study the density of states in monolayer and bilayer graphene in the presence of a random potential that breaks sublattice symmetries. While a uniform symmetry-breaking potential opens a uniform gap, a random symmetry-breaking potential also creates tails in the density of states. The latter can close the gap again, preventing the system to become an insulator. However, for a sufficiently large gap the tails contain localized states with nonzero density of states. These localized states allow the system to conduct at nonzero temperature via variable-range hopping. This result is in agreement with recent experimental observations in graphane by Elias {\it et al.}.Comment: 16 pages, 7 figure

    Functionalizing self-assembled GaN quantum dot superlattices by Eu-implantation

    Get PDF
    Self-assembled GaN quantum dots (QDs) stacked in superlattices (SL) with AlN spacer layers were implanted with Europium ions to fluences of 1013, 1014, and 1015 cm−2. The damage level introduced in the QDs by the implantation stays well below that of thick GaN epilayers. For the lowest fluence, the structural properties remain unchanged after implantation and annealing while for higher fluences the implantation damage causes an expansion of the SL in the [0001] direction which increases with implantation fluence and is only partly reversed after thermal annealing at 1000 °C. Nevertheless, in all cases, the SL quality remains very good after implantation and annealing with Eu ions incorporated preferentially into near-substitutional cation sites. Eu3+ optical activation is achieved after annealing in all samples. In the sample implanted with the lowest fluence, the Eu3+ emission arises mainly from Eu incorporated inside the QDs while for the higher fluences only the emission from Eu inside the AlN-buffer, capping, and spacer layers is observed. © 2010 American Institute of PhysicsFCT-PTDC/CTM/100756/2008program PESSOA EGIDE/GRICESFCT-SFRH/BD/45774/2008FCT-SFRH/BD/44635/200

    Scattering of 7^{7}Be and 8^{8}B and the astrophysical S17_{17} factor

    Get PDF
    Measurements of scattering of 7^{7}Be at 87 MeV on a melamine (C3_{3}N6 _{6}H6_{6}) target and of 8^{8}B at 95 MeV on C were performed. For 7^{7}Be the angular range was extended over previous measurements and monitoring of the intensity of the radioactive beam was improved. The measurements allowed us to check and improve the optical model potentials used in the incoming and outgoing channels for the analysis of existing data on the proton transfer reaction 14^{14}N(7^{7}Be,8^{8}B)13^{13}C. The resultslead to an updated determination of the asymptotic normalization coefficient for the virtual decay 8^{8}B →\to 7^{7}Be + pp. We find a slightly larger value, Ctot2(8B)=0.466±0.047C_{tot}^{2}(^{8}B)=0.466\pm 0.047 fm−1^{-1}, for the melamine target. This implies an astrophysical factor, S17(0)=18.0±1.8S_{17}(0)=18.0\pm 1.8 eV⋅\cdotb, for the solar neutrino generating reaction 7^{7}Be(pp,Îł\gamma )8^{8}B.Comment: 7 pages, 4 figure

    Characterization of the Local Density of States Fluctuations near the Integer Quantum Hall Transition in a Quantum Dot Array

    Full text link
    We present a calculation for the second moment of the local density of states in a model of a two-dimensional quantum dot array near the quantum Hall transition. The quantum dot array model is a realistic adaptation of the lattice model for the quantum Hall transition in the two-dimensional electron gas in an external magnetic field proposed by Ludwig, Fisher, Shankar and Grinstein. We make use of a Dirac fermion representation for the Green functions in the presence of fluctuations for the quantum dot energy levels. A saddle-point approximation yields non-perturbative results for the first and second moments of the local density of states, showing interesting fluctuation behaviour near the quantum Hall transition. To our knowledge we discuss here one of the first analytic characterizations of chaotic behaviour for a two-dimensional mesoscopic structure. The connection with possible experimental investigations of the local density of states in the quantum dot array structures (by means of NMR Knight-shift or single-electron-tunneling techniques) and our work is also established.Comment: 11 LaTeX pages, 1 postscript figure, to appear in Phys.Rev.

    Bose-Einstein Condensation in a Trap: the Case of a Dense Condensate

    Full text link
    We consider the Bose-Einstein condensation of atoms in a trap where the density of particles is so high that the low density approach of Gross and Pitaevskii will not be applicable. For this purpose we use the slave boson representation which is valid for hard-core bosons at any density. This description leads to the same results as the Gross-Pitaevskii approach in the low density limit, but for higher densities, it predicts the depletion of the order parameter field condensate in the regions where the density of the atomic cloud is high.Comment: 6 pages RevTeX, 3 eps-figure

    Lifetime measurements of Triaxial Strongly Deformed bands in 163^{163}Tm

    Full text link
    With the Doppler Shift Attenuation Method, quadrupole transition moments, QtQ_t, were determined for the two recently proposed Triaxial Strongly Deformed (TSD) bands in 163^{163}Tm. The measured QtQ_t moments indicate that the deformation of these bands is larger than that of the yrast, signature partners. However, the measured values are smaller than those predicted by theory. This observation appears to be valid for TSD bands in several nuclei of the regionComment: 8 pages, 5 figures. Submitted to Physical Review

    Algorithms for Highly Symmetric Linear and Integer Programs

    Get PDF
    This paper deals with exploiting symmetry for solving linear and integer programming problems. Basic properties of linear representations of finite groups can be used to reduce symmetric linear programming to solving linear programs of lower dimension. Combining this approach with knowledge of the geometry of feasible integer solutions yields an algorithm for solving highly symmetric integer linear programs which only takes time which is linear in the number of constraints and quadratic in the dimension.Comment: 21 pages, 1 figure; some references and further comments added, title slightly change

    From chiral vibration to static chirality in ^{135}Nd

    Full text link
    Electromagnetic transition probabilities have been measured for the intra- and inter-band transitions in the two sequences in the nucleus ^{135}Nd that were previously identified as a composite chiral pair of rotational bands. The measurements are in good agreement with results of a new combination of TAC and RPA calculations. The chiral character of the bands is affirmed and it is shown that their behavior is associated with a transition from a vibrational into a static chiral regime.Comment: Accepted for publication in the Physical Review Letters. Small modifications to fit the length limits of the journal. 10 pages, 4 figure
    • 

    corecore