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Abstract. We study the density of states (DOS) in monolayer and bilayer
graphene in the presence of a random potential that breaks sublattice symmetries.
While a uniform symmetry-breaking potential (SBP) opens a uniform gap, a
random SBP also creates tails in the DOS. The latter can close the gap again,
preventing the system from becoming an insulator. However, for a sufficiently
large gap the tails contain localized states with nonzero DOS. These localized
states allow the system to conduct at nonzero temperature via variable-range
hopping. This result is in agreement with recent experimental observations in
graphane by Elias et al (2009 Science 323 610).
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1. Introduction

Graphene is a single sheet of carbon atoms that forms a honeycomb lattice (HCL). A graphene
monolayer as well as a stack of two graphene sheets (i.e. a graphene bilayer) are semimetals
with remarkably good conducting properties [1]–[3]. These materials have been experimentally
realized with external gates, which allow for a continuous change in the charge-carrier density.
There exists a nonzero minimal conductivity at the charge neutrality point. Its value is very
robust and almost unaffected by disorder or thermal fluctuations [3]–[6].

Many potential applications of graphene require an electronic gap to switch between
conducting and insulating states. A successful step in this direction has been achieved by
recent experiments with hydrogenated graphene (graphane) [7] and with gated bilayer graphene
(BLG) [8]–[10]. These experiments take advantage of the fact that the breaking of a discrete
symmetry of the lattice system opens a gap in the electronic spectrum at the Fermi energy. In
the case of monolayer graphene (MLG), a staggered potential that depends on the sublattice of
the HCL plays the role of such symmetry-breaking potential (SBP). For BLG, a gate potential
that distinguishes between the two graphene layers plays a similar role.

With these opportunities one enters a new field in graphene, where one can switch between
conducting and insulating regimes of a two-dimensional (2D) material, either by a chemical
process (e.g. oxidation or hydrogenation) or by applying an external electric field [11].

The opening of a gap can be observed experimentally either by a direct measurement of the
density of states (DOS) (e.g. by scanning tunneling microscopy [12]) or indirectly by measuring
transport properties. In the gapless case, we observe a metallic conductivity σ ∝ ρD, where D
is the diffusion coefficient (which is proportional to the scattering time) and ρ is the DOS. This
gives typically a conductivity of the order of e2/h. The gapped case, on the other hand, has a
strongly temperature-dependent conductivity due to thermal activation of charge carriers [13]

σ(T ) = σ0 e−T0/T , (1)
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with some characteristic temperature scale T0, which depends on the underlying model. A
different behavior was found experimentally in the insulating phase of graphane [7]:

σ(T ) ≈ σ0 e−(T0/T )1/3
, (2)

which is known as 2D variable-range hopping [14]. This behavior indicates the existence of
well-separated localized states, even at the charge-neutrality point, where the parameter T0

depends on the DOS at the Fermi energy EF as T0 ∝ 1/ρ(EF).
The experimental observation of a metal–insulator transition in graphane raises two

questions: (i) what are the details that describe the opening of a gap and (ii) what is the DOS in
the insulating phase? In this paper, we will focus on the mechanism of the gap opening due to an
SBP in MLG and BLG. It is crucial for our study that the SBP is not uniform in the realistic 2D
material. One reason for the latter is the fact that graphene is not flat but forms ripples [15]–[17].
Another reason is the incomplete coverage of a graphene layer with hydrogen atoms in the case
of graphane [7]. The spatially fluctuating SBP leads to interesting effects, including a second-
order phase transition due to spontaneous breaking of a discrete symmetry and the formation of
Lifshitz tails.

2. Model

Quasiparticles in MLG or in BLG are described in tight-binding approximation by a nearest-
neighbor hopping Hamiltonian

H = −

∑
〈r,r ′〉

tr,r ′c†
r cr ′ +

∑
r

Vr c†
r cr + h.c., (3)

where c†
r (cr ) are fermionic creation (annihilation) operators at lattice site r . The underlying

lattice structure is either an HCL (MLG) or two HCLs with Bernal stacking (BLG) [11, 18]. We
have an intralayer hopping rate t and an interlayer hopping rate t⊥ for BLG. There are different
forms of the potential Vr, depending on whether we consider MLG or BLG. Here we begin with
potentials that are uniform on each sublattice, whereas random fluctuations are considered in
section 2.4.

2.1. MLG

Vr is a staggered potential with Vr = m on sublattice A and Vr = −m on sublattice B. This
potential obviously breaks the sublattice symmetry of MLG. Such a staggered potential can be
the result of chemical absorption of non-carbon atoms in MLG (e.g. oxygen or hydrogen [7]).
A consequence of the symmetry breaking is the formation of a gap 1g = m. The spectrum of
MLG consists of two bands with dispersion

Ek = ±

√
m2 + ε2

k , (4)

where

ε2
k = t2[3 + 2 cos k1 + 4 cos(k1/2) cos(

√
3k2/2)] (5)

for lattice spacing a = 1.
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2.2. BLG

Vr is a biased gate potential that is Vr = m (Vr = −m) on the upper (lower) graphene sheet. The
potential in BLG has been realized as an external gate voltage, applied to the two layers of
BLG [8]. The spectrum of BLG consists of four bands [11] with two low-energy bands

E−

k (m) = ±

√
ε2

k + t2
⊥
/2 + m2 −

√
t4
⊥
/4 + (t2

⊥
+ 4m2)ε2

k , (6)

where εk is the monolayer dispersion of equation (5), and two high-energy bands

E+
k (m) = ±

√
ε2

k + t2
⊥
/2 + m2 +

√
t4
⊥
/4 + (t2

⊥
+ 4m2)ε2

k . (7)

The spectrum of the low-energy bands has nodes for m = 0, where E−

k (0) vanishes in a (k − K )2

manner, where K is the position of the nodes, which are the same as those of a single layer. For
small m � t⊥, a Mexican hat structure develops around k = K , with local extremum in the low-
energy band at E−

k (m) = ±m and a global minimum/maximum in the upper/lower low-energy
band at E−

k (m) = mt⊥/
√

t2
⊥

+ 4m2.
For small gating potential Vr = ±m, we can expand E−

k (m) under the square root near the
nodes and get

E−

k (m) ∼ ±

√
[1 − 4ε2

k t⊥(t2
⊥

+ 4ε2
k )

−1/2]m2 + E−

k (0)2. (8)

where t⊥ apparently reduces the gap. Very close to the nodes we can approximate the factor
in front of m2 by 1 and obtain an expression similar to the dispersion of MLG: E−

k (m) ∼

±
√

m2 + E−

k (0)2. Here we notice the absence of the Mexican hat structure in this approximation.
The resulting spectra for MLG and BLG are shown in figure 1.

2.3. Low-energy approximation

The two bands in MLG and the two low-energy bands in BLG represent a spinor-1/2
wave function. This allows us to expand the corresponding Hamiltonian in terms of Pauli
matrices σ j as

H = h1σ1 + h2σ2 + mσ3. (9)

Near each node the coefficients h j read in low-energy approximation [19]

h j = i∇ j (MLG), h1 = ∇
2
1 − ∇

2
2 , h2 = 2∇1∇2 (BLG), (10)

where (∇1, ∇2) is the 2D gradient.

2.4. Random fluctuations

In a realistic situation the potential Vr is not uniform, neither in MLG nor in BLG, as discussed
in the introduction. As a result, electrons experience a randomly varying potential Vr along each
graphene sheet, and m in the Hamiltonian of equation (9) becomes a random variable in space
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|k|− K

E
k

Bilayer

Monolayer

Figure 1. The energy spectra of MLG (blue) and BLG (red) are shown, with and
without a gap (dashed and solid lines, respectively) for positive energies. Note
the characteristic Mexican hat structure of gapped BLG.

as well. For BLG it is assumed that the gate voltage is adjusted at the charge-neutrality point
such that on average mr is exactly antisymmetric with respect to the two layers:
〈m1〉m = −〈m2〉m .

At first glance, the Hamiltonian in equation (3) is a standard hopping Hamiltonian with
random potential Vr. This is a model frequently used to study the generic case of Anderson
localization [20]. The dispersion, however, is special in the case of graphene due to the HCL:
at low energies it consists of two nodes (or valleys) K and K ′ [17, 19]. It is assumed here that
randomness scatters only at small momentum such that intervalley scattering, which requires
large momentum at least near the nodal points (NP), is not relevant and can be treated as
a perturbation. Then each valley contributes separately to the DOS, and the contribution of
the two valleys to the DOS ρ is additive: ρ = ρK + ρK ′ . This allows us to consider the low-
energy Hamiltonian in equations (9) and (10), even in the presence of randomness for each
valley separately. Within this approximation the term mr is a random variable with mean value
〈mr〉m = m̄ and variance 〈(mr − m̄)(mr′ − m̄)〉m = gδr,r′ . The following analytic calculations will
be based entirely on the Hamiltonian of equations (9) and (10) and the numerical calculations
on the lattice Hamiltonian of equation (3). In particular, the average Hamiltonian 〈H〉m can be
diagonalized by Fourier transformation and is

〈H〉m = k1σ1 + k2σ2 + m̄σ3 (11)

for MLG with eigenvalues Ek = ±
√

m̄2 + k2. For BGL, the average Hamiltonian is

〈H〉m = (k2
1 − k2

2)σ1 + 2k1k2σ2 + m̄σ3 (12)

with eigenvalues Ek = ±
√

m̄2 + k4.
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2.5. Symmetries

Low-energy properties are controlled by the symmetry of the Hamiltonian and of the
corresponding one-particle Green’s function G(iε) = (H + iε)−1. In the absence of sublattice-
symmetry breaking (i.e. for m = 0), the Hamiltonian H = h1σ1 + h2σ2 has a continuous chiral
symmetry

H → eασ3 Heασ3 = H (13)

with a continuous parameter α, since H anticommutes with σ3. The term mσ3 breaks the
continuous chiral symmetry. However, the behavior under transposition hT

j = −h j for MLG
and hT

j = h j for BLG in equation (10) provides a discrete symmetry:

H → −σn H Tσn = H, (14)

where n = 1 for MLG and n = 2 for BLG. This symmetry is broken for the one-particle Green’s
function G(iε) by the iε term. To see whether or not the symmetry is restored in the limit
ε → 0, the difference of G(iε) and the transformed Green’s function −σnGT(iε)σn must be
evaluated:

G(iε) + σnGT(iε)σn = G(iε) − G(−iε). (15)

For the diagonal elements, this is the DOS at the NP ρ(E = 0) ≡ ρ0 in the limit ε → 0. Thus,
the order parameter for spontaneous symmetry breaking is ρ0. According to the theory of
phase transitions, the transition from a nonzero ρ0 (spontaneously broken symmetry) to ρ0 = 0
(symmetric phase) is a second-order phase transition, and should be accompanied by a divergent
correlation length at the transition point. Since our symmetry is discrete, such a phase transition
can exist in d = 2 and should be of Ising type. A calculation, using the self-consistent Born
approximation (SCBA) of ρ0, gives indeed a second-order transition at the point where ρ0

vanishes with a divergent correlation length ξ for the DOS fluctuations

ξ ∼ ξ0(m
2
c − m̄2)−1

for m̄2
∼ m2

c with a finite coefficient ξ0 [21]. Whether or not this transition is an artifact of the
SCBA or represents a physical effect due to the appearance of two types of spectra (localized
for vanishing SCBA-DOS and delocalized for nonzero SCBA-DOS) is not obvious here and
requires further studies.

2.6. DOS

Our focus in the subsequent calculation is on the DOS of MLG and BLG. In the absence of
disorder, the DOS of 2D Dirac fermions opens a gap 1 ∝ m̄ as soon as a nonzero term m̄
appears in the Hamiltonian of equation (9), since the low-energy dispersion is Ek = ±

√
m̄2 + k2

for MLG and Ek = ±
√

m̄2 + k4 for BLG, respectively (cf figure 2). Here we evaluate the DOS
of MLG and BLG in the presence of a uniform gap. Given the energy spectrum, the DOS is
defined as

ρ(E) =

∑
k

δ(E − Ek). (16)
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Figure 2. DOS for a uniform SBP for MLG and BLG is shown in the left panel.
The DOS for a uniform SBP for BLG is shown for several values of t⊥. For
small t⊥, the Mexican hat structure influences the DOS by shifting the gap to
lower values, and by developing a kink at E = m.

By using the MLG dispersion, this reduces to

ρ(E) = |E |2(|E | − m), (17)

where 2(x) is the Heaviside function. For BLG, this gives

ρ(E) =
|E |

2
√

E2 − m2
2(|E | − m), (18)

which are shown in figure 2. By retaining the full low-energy spectrum for BLG, E−

k , the DOS
can still be evaluated in a closed form, with the result

ρ(E) = |E |


(t2

⊥
+ 4m2)√

(t2
⊥

+ 4m2)E2 − t2
⊥

m2
, for m > |E | >

mt⊥√
t2
⊥

+ 4m2
,

(t2
⊥

+ 4m2)

2
√

(t2
⊥

+ 4m2)E2 − t2
⊥

m2
+ 1, for |E | > m.

(19)

In the limit of t⊥ � (E, m), this reduces to equation (18) after dividing it by t⊥, which was set
to 1 in the low-energy approximation, and the DOS saturates to a constant value after the initial
divergence. For finite t⊥, however, the Dirac nature of the spectrum appears again, and the high-
energy DOS increases linearly even for the BLG, similarly to the MLG case. For m = 0 and
E � t⊥, this lengthy expression gives

ρ(E � t⊥) =
t⊥
2

. (20)
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(a)

(b)

E

E

DOS

DOS

Figure 3. Schematic shape of the DOS: full curves are the bulk DOS for uniform
SBP, dotted curves represent the broadening by disorder. The broadened DOS
can overlap inside the gap for m̄ < mc (a) or not for m̄ > mc (b), depending on
the average SBP m̄. mc is given in equation (29).

An interesting question, from the theoretical as well as from the experimental point of view,
appears here: what is the effect of random fluctuations around m̄? Previous calculations, based
on the SCBA, have revealed that those fluctuations can close the gap again, even for an average
SBP term m̄ 6= 0 [22]. Only if m̄ exceeds a critical value mc (which depends on the strength
of the fluctuations), an open gap was found in these calculations (cf figure 3). This describes a
special transition from metallic to insulating behavior. In particular, the DOS at the Dirac point
ρ0 vanishes with m̄ like a power law

ρ0(m̄) ∼

√
m̄ − m2

c. (21)

The exponent 1/2 of the power law is probably an artifact of the SCBA, similar to the critical
exponent in mean-field approximations.

3. SCBA

The average one-particle Green’s function can be calculated from the average Hamiltonian 〈H〉m

by employing the SCBA [23]–[25]

〈G(iε)〉m ≈ (〈H〉m + iε − 26)−1
≡ G0(iη, ms). (22)

The SCBA is also known as the self-consistent non-crossing approximation in the Kondo and
superconducting community. The self-energy 6 is a 2 × 2 tensor due to the spinor structure
of the quasiparticles: 6 = −(iησ0 + msσ3)/2. Scattering by the random SBP produces an
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imaginary part of the self-energy η (i.e. a one-particle scattering rate) and a shift ms of the
average SBP m̄ (i.e. m̄ → m ′

≡ m̄ + ms). 6 is determined by the self-consistent equation

6 = −gσ3(〈H〉m + iε − 26)−1
rr σ3 . (23)

The symmetry in equation (14) implies that with 6 also

σn6σn = −(iησ0 − msσ3)/2 (24)

is a solution (i.e. ms → −ms creates a second solution).
The average DOS at the NP is proportional to the scattering rate: ρ0 = η/2gπ . This reflects

that scattering by the random SBP creates a nonzero DOS at the NP if η > 0.
Now we assume that the parameters η and ms are uniform in space. Then equation (23) can

be written in terms of two equations, one for the one-particle scattering rate η and another for
the shift of the SBP ms, as

η = gIη, ms = −m̄gI/(1 + gI ), (25)

where I is a function of m̄ and η and also depends on the Hamiltonian. For MLG it reads with
momentum cutoff λ

IMLG =
1

2π
ln

[
1 +

λ2

η2 + (m̄ + ms)2

]
(26)

and for BLG

IBLG ∼
1

4
√

η2 + (m̄ + ms)2
(λ ∼ ∞). (27)

A nonzero solution η requires gI = 1 in the first part of equation (25), such that ms = −m̄/2
from the second part. Since the integrals I are monotonically decreasing functions for large m̄,
a real solution with gI = 1 exists only for |m̄|6 mc. For both MLG and BLG, the solutions read

η2
= (m2

c − m̄2)2(m2
c − m̄2)/4, (28)

where the model dependence enters only through the critical average SBP mc:

mc =

{
(2λ/

√
e2π/g − 1) ∼ 2λe−π/g, MLG,

g/2, BLG.
(29)

Here mc is much bigger for BGL, a result that indicates that the effect of disorder is much
stronger in BLG. This is also reflected by the scattering rate at m̄ = 0, which is η = mc/2.

A central assumption of the SCBA is a uniform self-energy 6. The imaginary part of
6 is the scattering rate η, created by the random fluctuations. Therefore, a uniform η means
that effectively random fluctuations are densely filling the lattice. If the distribution of the
fluctuations is too dilute, however, there is no uniform nonzero solution of equation (23).
Nevertheless, a dilute distribution can still create a nonzero DOS, as we will discuss in the
following: we study contributions to the DOS due to rare events, leading to Lifshitz tails.
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4. Lifshitz tails

In the system with uniform SBP, the gap can be destroyed locally by a local change of the
SBP m → m + δmr due to the creation of a bound state. We start with a translational-invariant
system and add δmr on site r . To evaluate the corresponding DOS from Green’s function
G = (H + iε + δmσ3)

−1, using Green’s function G0 = (H + iε)−1 with uniform m, we employ
the lattice version of the Lippmann–Schwinger equation [26]

G = G0 − G0TSG0 = (1 − G0Tr)G0, (30)

with the 2 × 2 scattering matrix

Tr = (σ0 + δmrσ3G0,rr)
−1σ3δmr . (31)

In the case of MLG, we have

G0 = [(E + iε)σ0 − mσ3]
1

2π

∫ λ

0

k

(ε − iE)2 + m2 + k2
dk (32)

∼ (Eσ0 − mσ3)
1

4π
log[1 + λ2/(m2

− E2)] + o(iε) ≡ (g0 + iεs)σ0 + g3σ3. (33)

(Remark: the DOS of BLG has the same form.) Then the imaginary part of the Green’s function
reads

Im[G(η)] = −

(
δεs(g0 + g3 + δmr) 0

0 δεs(g0 − g3 − δmr)

)
, (34)

with

δεs(x) =
εs

x2 + ε2s2
. (35)

Thus, the DOS is the sum of two Dirac delta peaks

ρr ∝ δεs(g0 + g3 + δmr) + δεs(g0 − g3 − δmr). (36)

The Dirac delta peak appears with probability ∝ exp(−(g0 ± g3)
2/g) for a Gaussian

distribution. This calculation can easily be generalized to δmr on a set of several sites r [26].
Then the appearance of several Dirac delta peaks decreases exponentially. Moreover, these
contributions are local and form localized states. For stronger fluctuations δmr (i.e. for
increasing g), the localized states can start to overlap. This is a quantum analogue of classical
percolation.

The localized states in the Lifshitz tails can be taken into account by a generalization of the
SCBA to non-uniform self-energies. The main idea is to search for space-dependent solutions
6r of equation (23). In general, this is a difficult problem. However, we have found that this
problem simplifies essentially when we study it in terms of a 1/m̄ expansion. Using a Gaussian
distribution, this method gives Lifshitz tails of the form [27]:

ρ0(m̄) ∼
m̄4

32
√

πg5/2
e−m̄2/4g. (37)
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random mass configuration with Gaussian distribution (with variance g) on a
600 × 600 HCL, by varying the uniform gap. The red line denotes the maximum
of the level spacing of these eigenvalues, a possible definition of the average gap.

5. Numerical approach

To understand the behavior of random gap fluctuations in graphene and also the limitations of
the SCBA, we carried out extensive numerical simulations on the HCL, allowing for various
random gap fluctuations on top of a uniform gap m̄. These fluctuations are simulated by box
and Gaussian distributions. From the SCBA, the emergence of a second-order phase transition
at a critical mean mc is obvious for a given variance. This is best manifested in the behavior
of the DOS, which stays finite for (m̄) < mc, and vanishes afterwards, and serves as an order
parameter. Does this picture indeed survive, when higher order corrections in the fluctuations
are taken into account?

To start with, we take a fix random mass configuration with a given variance and the HCL
with the conventional hoppings (t), represented by H0. Then, we take a separate Hamiltonian,
responsible for the uniform, non-fluctuating gaps, denoted by Hgap, and study the evolution
of the eigenvalues of H0 + m̄ Hgap by varying m̄ for a 600 × 600 lattice. By using Lanczos
diagonalization, we focus our attention only to the 200 eigenvalues closest to the NP. Their
evolution is shown in figure 4. This supports the existence of a finite mc, but since it originates
from a single random disorder configuration, rare events can alter the result. As a possible
definition of the rigid gap, we also show the maximum of the energy level spacing for these
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Figure 5. The DOS at the NP is plotted for Gaussian distribution for a 200 × 200
HCL for g = 0.92, 1, 1.12, 1.22 and 1.32 from bottom to top after 400 averages.
The symbols denote the numerical data, solid lines are fits using a exp(−bmc).
The inset shows the obtained exponents, c, as a function of g, which is close
to 1.5.

eigenvalues as a function of m̄. As seen, it starts to increase abruptly at a certain value of m̄,
which can define mc.

To investigate whether a finite critical mc survives, we take smaller systems and evaluate the
averaged DOS directly from many disorder realizations. To achieve this, we take a 200 × 200
HCL, and evaluate the 200 closest eigenvalues to the NP, and count their number in a given
small interval, 1E (smaller than the maximal eigenvalues) around zero. This method was found
to be efficient in studying other types of randomness [28]. We mention that large values of 1E
take contribution from higher energy states into account, while too small values are sensitive to
the discrete lattice and consequently the discrete eigenvalue structure of the Hamiltonian. For
lattices containing a few 104–105 sites, 1E/t ∼ 10−2–10−4 are convenient.

The resulting DOS is plotted in figures 5 and 6 for Gaussian (with variance g) and box
distribution (within [ − W . . . W ], variance g = W 2/3). This does not indicate a sharp threshold,
but rather the development of long Lifshitz tails due to randomness, as we already predicted in
the previous section. To analyze them, we fitted the numerical data by assuming exponential
tails of the form

ρ(0) = t exp (−a − bmc) (38)

for a Gaussian and

ρ(0) = t exp (−a − b/|m̄ − W |
c) (39)

for a box distribution, as suggested by Cardy [29]. The obtained c values are visualized in the
insets of figures 5 and 6. Given the good agreement, we believe that the DOS at the NP is made
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Figure 6. The DOS at the NP is plotted for box distributed ([−W . . . W ])
randomness for a 200 × 200 HCL for W = 1.5, 1.7 and 2 (g = W 2/3) from
bottom to top after 400 averages. The symbols denote the numerical data,
solid lines are fits using a exp(−b/|m̄ − W |

c). The inset shows the obtained
exponents, c, as a function of g.

of states that are localized in a Lifshitz tail. We mention that these results are not sensitive to
finite size scaling at these values of the disorder and uniform gap, only smaller systems (like the
30 × 30 HCL) require more averages (∼104), whereas for larger ones (such as the 200 × 200
with 400 averages) fewer averages are sufficient.

In figure 7, the energy-dependent DOS is shown for Gaussian distribution with g = 1 and
for several uniform gap values. With increasing m̄, the DOS diminishes rapidly at low energies
and develops a pseudogap. The logarithmic singularity at E = t is washed out for g = 1. We
also show the inverse of the DOS, proportional to T0, the characteristic temperature scale of
variable range hopping as a function of the carrier density (which is proportional to E2).

6. Discussion

MLG and BLG consist of two bands that touch each other at two NP (or valleys). Near the
nodes the spectrum of MLG is linear (Dirac-like) and the spectrum of BLG is quadratic.
The application of a uniform SBP opens a gap in the DOS for both cases. For a random
SPB, however, the situation is less obvious. First of all, it is clear that randomness leads to a
broadening of the bands. If we have two separate bands due to a small uniform SPB, randomness
can close the gap again due to broadening (cf figure 3). The broadening of the bands depends on
the strength of the fluctuations of the random SBP. In the case of a Gaussian distribution there
are energy tails for all energies.

Now we focus on the NP, i.e. we consider E = 0 and ρ0. Then we have two parameters in
order to change the gap structure: the average SBP 〈m〉 ≡ m̄ and the variance g. m̄ allows us
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Figure 7. The energy-dependent DOS is plotted for Gaussian distribution for a
30 × 30 HCL after 104 averages for g = 1, m = 2 (cyan), 1 (blue), 0.5 (red),
0.3 (black), 0.2 (magenta) and 0 (green) in the left panel. The right panel
visualizes the inverse of the DOS, being proportional to T0 in the variable range
hopping model as a function of the energy squared (proportional to the carrier
density).

to broaden the gap and g has the effect of closing it due to broadening of the two subbands.
Previous calculations have shown that at the critical value mc(g) of equation (29) the metallic
behavior breaks down for m̄ > mc(g) [22]. On the other hand, Gaussian randomness creates tails
at all energies. Consequently, there are localized states for |m̄|> mc(g) at the NP, and there are
delocalized states for |m̄| < mc(g) at the NP. The localized states in the tails are described, for
instance, by the Lippmann–Schwinger equation (30). The SCBA with uniform self-energy is not
able to produce the localized tails. An extension of the SCBA with non-uniform self-energies
provides localized tails although, as an approximation for large m̄ has shown [27]. This is also
in good agreement with our exact diagonalization of finite systems up to 200 × 200 size.

A possible interpretation of these results is that there are two different types of spectra. In
a special realization of mr the tails of the DOS represent localized states. On the other hand,
the DOS at the NP E = 0, obtained from the SCBA with uniform self-energy, comes from
extended states [22]. The localized and the delocalized spectrum separate at the critical value
mc, undergoing an Anderson transition.

Conductivity. Transport, i.e. the metallic regime, is related to the DOS through the Einstein
relation σ ∝ ρD, where D is the diffusion coefficient. The latter was found in [22] for
E ∼ 0 as

D =
ag
√

m2
c − m̄2

2πm2
c

2(m2
c − m̄2), (40)
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where a = 1 (a = 2) for MLG (BLG). Together with the DOS ρ0 = η/2gπ and the scattering
rate η in equation (28), the Einstein relation gives us at the NP

σ(ω ∼ 0) ∝ ρ0 D
e2

h
≈

a

8π 2

(
1 −

m̄2

m2
c

)
2(m2

c − m̄2)
e2

h
. (41)

In the localized regime (i.e. for |m̄|> mc), the conductivity is nonzero only for positive
temperatures T > 0. Then we can apply the formula for variable-range hopping in equation (2),
which fits well the experimental result in graphane of [7]. The parameter T0 is related to the
DOS at the Fermi level as [14]

kBT0 ∝
1

ξ 2ρ(EF)
, (42)

where ξ is the localization length. T0 has its maximum at the NP EF = 0, as shown in figure 7 and
decreases monotonically with increasing carrier density, as in the experiment on graphane [7].

In conclusion, we have studied the DOS in MLG and BLG at low energies in the presence
of a random SBP. While a uniform SBP opens a uniform gap, a random SBP also creates tails in
the DOS. The latter can close the gap again, preventing the system to become an insulator at the
nodes. However, for a sufficiently large gap the tails contain localized states with nonzero DOS.
These localized states allow the system to conduct at nonzero temperature via variable-range
hopping. This result is in agreement with recent experimental observations [7].
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