4,912 research outputs found

    Optimal branching structure of fluidic networks with permeable walls

    Get PDF
    Biological and engineering studies of Hess-Murray’s law are focused on assemblies of tubes with impermeable walls. Blood vessels and airways have permeable walls to allow the exchange of fluid and other dissolved substances with tissues. Should Hess-Murray’s law hold for bifurcating systems in which the walls of the vessels are permeable to fluid? This paper investigates the fluid flow in a porous-walled T-shaped assembly of vessels. Fluid flow in this branching flow structure is studied numerically to predict the configuration that provides greater access to the flow. Our findings indicate, among other results, that an asymmetric flow (i.e., breaking the symmetry of the flow distribution) may occur in this symmetrical dichotomous system. To derive expressions for the optimum branching sizes, the hydraulic resistance of the branched system is computed. Here we show the T-shaped assembly of vessels is only conforming to Hess-Murray’s law optimum as long as they have impervious walls. Findings also indicate that the optimum relationship between the sizes of parent and daughter tubes depends on the wall permeability of the assembled tubes. Our results agree with analytical results obtained from a variety of sources and provide new insights into the dynamics within the assembly of vessels

    Binary mixtures of condensates in generic confining potentials

    Full text link
    We study a binary mixture of Bose-Einstein condensates, confined in a generic potential, in the Thomas-Fermi approximation. We search for the zero-temperature ground state of the system, both in the case of fixed numbers of particles and fixed chemical potentials.Comment: 20 pages, 2 figure

    Integrating Superconductive and Optical Circuits

    Full text link
    We have integrated on oxidized silicon wafers superconductive films and Josephson junctions along with sol-gel optical channel waveguides. The fabrication process is carried out in two steps that result to be solid and non-invasive. It is demonstrated that 660 nm light, coupled from an optical fibre into the channel sol-gel waveguide, can be directed toward superconducting tunnel junctions whose current-voltage characteristics are affected by the presence of the radiation. The dependence of the change in the superconducting energy gap under optical pumping is discussed in terms of a non-equilibrium superconductivity model.Comment: Document composed of 7 pages of text and 3 figure

    Otimização de design do duto ramificado em forma de T com escoamento de fluido newtoniano e paredes impermeáveis

    Get PDF
    Este artigo apresenta os resultados de escoamentos em dutos em forma de “T”. O problema consiste em encontrar as resistências ao escoamento em estruturas tridimensionais (3D) cujos sistemas têm diferentes relações homotética entre tamanhos (diâmetros e comprimentos) dos dutos de entrada e saída de fluído. O método utilizado é denominado “Constructal Design” e é fundamentado na “Teoria Constructal”. Este método baseia-se na minimização da resistência global sujeito a restrições geométricas, que no presente estudo são o volume e área ocupada pelos dutos considerados constantes. O escoamento nos dutos é considerado tridimensional, laminar, incompressível, e em regime permanente e com propriedades uniformes e constantes. Os resultados obtidos numericamente em geometrias 3D é validado por comparação com os resultados analíticos bidimensional disponíveis na literatura. A geometria será estudada para diferentes relações D1 / D0 e L1 / L0, para diferentes número de Reynolds

    Light interaction with extended quantum systems in dispersive media

    Get PDF
    We derive a light–matter interaction Hamiltonian to describe a quantum system embedded in a dispersive environment and coupled with the electromagnetic field. We include in this theory the spatial extension of the system, taken into account through its wavefunction. This enables us to overcome the divergence problem of the Green tensor propagator that arises from a point-like approximation of the quantum system. Thus the formalism can be applied to generalize the expressions for the spontaneous emission rate and the Lamb shift for a quantum system defined by a spatially extended dipole. In particular, these quantities can be modified by the asymmetry of the spatial structure of the atomic system as demonstrated in two test-bed examples

    Stationary excitation waves and multimerization in arrays of quantum emitters

    Get PDF
    We explore the features of an equally-spaced array of two-level quantum emitters, that can be either natural atoms (or molecules) or artificial atoms, coupled to a field with a single continuous degree of freedom (such as an electromagnetic mode propagating in a waveguide). We investigate the existence and characteristics of bound states, in which a single excitation is shared among the emitters and the field. We focus on bound states in the continuum, occurring in correspondence of excitation energies in which a single excited emitter would decay. We characterize such bound states for an arbitrary number of emitters, and obtain two main results, both ascribable to the presence of evanescent fields. First, the excitation profile of the emitter states is a sinusoidal wave. Second, we discuss the emergence of multimers, consisting in subsets of emitters separated by two lattice spacings in which the electromagnetic field is approximately vanishing

    Two-Hole Bound States from a Systematic Low-Energy Effective Field Theory for Magnons and Holes in an Antiferromagnet

    Full text link
    Identifying the correct low-energy effective theory for magnons and holes in an antiferromagnet has remained an open problem for a long time. In analogy to the effective theory for pions and nucleons in QCD, based on a symmetry analysis of Hubbard and t-J-type models, we construct a systematic low-energy effective field theory for magnons and holes located inside pockets centered at lattice momenta (\pm pi/2a,\pm pi/2a). The effective theory is based on a nonlinear realization of the spontaneously broken spin symmetry and makes model-independent universal predictions for the entire class of lightly doped antiferromagnetic precursors of high-temperature superconductors. The predictions of the effective theory are exact, order by order in a systematic low-energy expansion. We derive the one-magnon exchange potentials between two holes in an otherwise undoped system. Remarkably, in some cases the corresponding two-hole Schr\"odinger equations can even be solved analytically. The resulting bound states have d-wave characteristics. The ground state wave function of two holes residing in different hole pockets has a d_{x^2-y^2}-like symmetry, while for two holes in the same pocket the symmetry resembles d_{xy}.Comment: 35 pages, 11 figure

    Strong HI Lyman-α\alpha variations from the 11 Gyr-old host star Kepler-444: a planetary origin ?

    Full text link
    Kepler-444 provides a unique opportunity to probe the atmospheric composition and evolution of a compact system of exoplanets smaller than the Earth. Five planets transit this bright K star at close orbital distances, but they are too small for their putative lower atmosphere to be probed at optical/infrared wavelengths. We used the Space Telescope Imaging Spectrograph instrument onboard the Hubble Space Telescope to search for the signature of the planet's upper atmospheres at six independent epochs in the Ly-α\alpha line. We detect significant flux variations during the transits of both Kepler-444e and f (~20%), and also at a time when none of the known planets was transiting (~40%). Variability in the transition region and corona of the host star might be the source of these variations. Yet, their amplitude over short time scales (~2-3 hours) is surprisingly strong for this old (11.2+-1.0Gyr) and apparently quiet main-sequence star. Alternatively, we show that the in-transits variations could be explained by absorption from neutral hydrogen exospheres trailing the two outer planets (Kepler-444e and f). They would have to contain substantial amounts of water to replenish such hydrogen exospheres, which would reveal them as the first confirmed ocean-planets. The out-of-transit variations, however, would require the presence of a yet-undetected Kepler-444g at larger orbital distance, casting doubt on the planetary origin scenario. Using HARPS-N observations in the sodium doublet, we derived the properties of two Interstellar Medium clouds along the line-of-sight toward Kepler-444. This allowed us to reconstruct the stellar Ly-α\alpha line profile and to estimate the XUV irradiation from the star, which would still allow for a moderate mass loss from the outer planets after 11.2Gyr. Follow-up of the system at XUV wavelengths will be required to assess this tantalizing possibility.Comment: Accepted for publication in A&A Name of the system added to the title in most recent versio

    High-energy environment of super-Earth 55 Cnc e I: Far-UV chromospheric variability as a possible tracer of planet-induced coronal rain

    Full text link
    The irradiation of close-in planets by their star influences their evolution and might be responsible for a population of ultra-short period planets eroded to their bare core. In orbit around a bright, nearby G-type star, the super-Earth 55 Cnc e offers the possibility to address these issues through UV transit observations. We used the Hubble Space Telescope to observe the transit in the FUV over 3 epochs in Apr. 2016, Jan. 2017, and Feb. 2017. These observations reveal significant short- and long-term variability in 55 Cnc chromospheric emission lines. In the last 2 epochs, we detected a larger flux in the C III, Si III, and Si IV lines after the planet passed the approaching quadrature, followed by a flux decrease in the Si IV doublet. In the second epoch these variations are contemporaneous with flux decreases in the Si II and C II doublet. All epochs show flux decreases in the N V doublet as well, albeit at different orbital phases. These flux decreases are consistent with absorption from optically thin clouds of gas, are mostly localized at low and redshifted radial velocities in the star rest frame, and occur preferentially before and during the transit. These 3 points make it unlikely that the variations are purely stellar, yet we show that the occulting material is also unlikely to originate from the planet. We tentatively propose that the motion of 55 Cnc e at the fringes of the stellar corona leads to the formation of a cool coronal rain. The inhomogeneity and temporal evolution of the stellar corona would be responsible for the differences between the visits. Additional variations are detected in the C II doublet in the first epoch and in the O I triplet in all epochs with a different behavior that points toward intrinsic stellar variability. Further observations at FUV wavelengths are required to disentangle between star-planet interactions and the activity of the starComment: 22 pages, 20 figures, accepted for publication in A&
    corecore