
New J. Phys. 22 (2020) 123047 https://doi.org/10.1088/1367-2630/abd204

OPEN ACCESS

RECEIVED

11 July 2020

REVISED

19 November 2020

ACCEPTED FOR PUBLICATION

9 December 2020

PUBLISHED

30 December 2020

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOI.

PAPER

Light interaction with extended quantum systems in dispersive
media

Giovanni Scala1,2 , Francesco V Pepe1,2,∗ , Paolo Facchi1,2 , Saverio Pascazio1,2

and Karolina Słowik3

1 Dipartimento di Fisica and MECENAS, Università di Bari, I-70126 Bari, Italy
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Abstract
We derive a light–matter interaction Hamiltonian to describe a quantum system embedded in a
dispersive environment and coupled with the electromagnetic field. We include in this theory the
spatial extension of the system, taken into account through its wavefunction. This enables us to
overcome the divergence problem of the Green tensor propagator that arises from a point-like
approximation of the quantum system. Thus the formalism can be applied to generalize the
expressions for the spontaneous emission rate and the Lamb shift for a quantum system defined by
a spatially extended dipole. In particular, these quantities can be modified by the asymmetry of the
spatial structure of the atomic system as demonstrated in two test-bed examples.

1. Introduction

The interaction of an atomic system with a surrounding photonic bath yields a correction to the atomic
transition energy, referred to as Lamb shift [1], and gives rise to the process of spontaneous emission. The
latter is described in the Markovian limit as an exponential decay [2, 3], while a much more sophisticated
behavior was predicted and verified in non-Markovian regimes [4, 5]. If multiple emitters are present, a
shared photonic bath acts as a carrier of interactions among them and is responsible for collective emission,
such as Casimir effect [6] or Dicke superradiance [7]. For a comprehensive discussion of these and other
effects of quantum vacuum on atomic systems see [8].

The spatial and spectral structure of the photonic bath can be tailored, e.g. with traditional cavities or
nanostructured materials. As a consequence, the effects arising in atomic systems coupled to such tailored
surroundings are modified accordingly [9, 10]. When it comes to spontaneous emission, this phenomenon
has been termed Purcell effect [11–14]. Similarly, the Lamb shift and collective effects can be tailored by
proper engineering of the photonic bath [15, 16]. In the great majority of works studying light–matter
interactions in this context, atomic systems are assumed to be point-like dipoles, without internal structure.
This is usually a well-justified approximation, since the size of the atomic system is much below the
emission wavelength. However, recent advancement in the field of nanophotonic brought into reach nano-
or even picometric cavities [17, 18]. In the conditions of extreme light confinement, the internal structure
of the atomic system might have a considerable impact on its optical response, which might require
extensions of the theory beyond the point-dipole [19–21] or electric-dipole approximations [22]. On the
other hand, spatially extended systems like quantum dots may require such treatment even when embedded
in a photonic environment as simple as a homogeneous and isotropic medium.

Accounting for the internal structure of atomic systems can lead to much more than quantitative
corrections of their optical properties; actually, effects like spatial asymmetry may give rise to appealing new
applications, such as optically-tunable low-frequency radiation sources based on resonantly driven systems
[23–25]. Scenarios exploiting systems with broken inversion symmetry were proposed for light squeezing
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Figure 1. Graphical representation of the total Hamiltonian. In blue, the atomic V‖
at, the medium V‖

m [equation (2)], and the
field H⊥

f [equation (5)] Hamiltonians. The blue blocks are connected by the interaction blocks. Hence Tm and Tat connect the
medium and the atom, respectively, with the field as in equation (4), and V‖

at−m connects the atom and the medium, as in
equation (3). These six terms appear in equation (1). The medium-assisted field Hm [equation (15)] arises from the terms
V‖

m, Tm and H⊥
f (solid box on the right), and the atomic Hamiltonian becomes Hat via the PZW transformation [equation (11)]

(dashed box on the left). Hat interacts with Hm through Hint as in equation (28). By neglecting the magnetic properties one
obtains Hel

int [equation (30)], which completes the model investigated.

[26] and lasing [27]. The asymmetry has already been studied in the context of a coherent driving field [28,
29] with a long list of recent experiments which involve quantum piezoelectricity [30], quantum dots [30],
dye molecules [31], spin-echo [32], Ramsey interferometer [33], crystal centers [13, 34], and graphene
[35, 36].

We shall avoid the introduction of ad hoc artificial cutoffs to remove the divergencies that arise, in the
context analyzed in this article, from two distinct effects: the assumption of point-like atoms and the
neglection of the medium granularity, which amounts to disregarding the momentum-dependence of the
dielectric permittivity. Observe that the different nature of these divergences is lost if an artificial cutoff is
introduced. We propose here an approach in which the wavefunctions are consistently incorporated in the
description of the system and in the determination of the decay rates and Lamb shifts. This enables us to
describe in a natural way all effects due to anisotropies and the broken inversion symmetry. Our results will
therefore be valid (and of special interest) in the context of artificial atoms, in which the wavefunctions can
in principle extend beyond medium granularity, therefore providing the essential natural cutoff to the
system. As opposed to artificial cutoffs, this method provides reliable results also for near field.

We shall see how the divergence problem [37, 38], encountered when one evaluates the transition
properties of atomic systems in dispersive media, can be solved naturally. This problem was treated with
many different approaches in other works [39–42]. We shall exploit the medium-assisted field expressed
through the Green tensor propagator [43, 44], which can be applied also for classical electrodynamics [45],
to account for the properties of the photonic surroundings. These can be modified in presence of a host
medium, which in general could be structured in terms of geometric shape and spectral response. Although
parts of our theory are general, we pay special attention to translationally invariant media.

The article is organized as follows. In section 2, we discuss all the terms of the Hamiltonian; in
particular, we describe the form of the coupling between a system of charges and a medium-assisted field,
representing in a single entity both the electromagnetic field and the medium charges. In section 3, we use
the developed theory to obtain the decay rate and energy shift for an arbitrary bound state, highlighting the
contribution of spatial asymmetry of the eigenstates of the atomic Hamiltonian. In section 4, we apply the
results to two test-beds. Finally, in section 5, we summarize the obtained results and outline future research.

2. Hamiltonian

We start from a first-principle Hamiltonian where positive and negative charges of the atomic system and
the medium are coupled with the electromagnetic field. If the focus is on the atomic dynamics, the system
can be conveniently modeled by coupling the atom to a medium-assisted electromagnetic field, which is
dressed by the interaction with the hosting medium (see figure 1).

Let us consider the Coulomb-gauge Hamiltonian [46, 47], separating the longitudinal and transverse
contributions

H = V‖
at + V‖

m + V‖
at−m + Tat + Tm + H⊥

F . (1)
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Atomic charges will be labelled by roman indices j, k and the charges of the medium by Greek indices µ, ν.
The terms

V‖
at =

1
8πε0

∑

j%=k

QjQk

|rj − rk|
, V‖

m =
1

8πε0

∑

µ %=ν

QµQν

|rµ − rν |
, (2)

represent the internal Coulomb interactions among the charges Qk of the atomic system (placed at positions
rk) and among the charges Qµ of the medium (placed at positions rµ), respectively. The atom–medium
Coulomb interactions read

V‖
at−m =

1
4πε0

∑

j,µ

QjQµ

|rj − rµ|
. (3)

The kinetic terms

Tat =
∑

j

(
pj − QjA(rj)

)2

2mj
, Tm =

∑

µ

(
pµ − QµA(rµ)

)2

2mµ
, (4)

contain the minimal coupling between the charges (with canonical momenta pj = −i!∇rj and
pµ = −i!∇rµ , and masses mj and mµ, respectively) and the transverse part of the field, represented by the
Coulomb gauge vector potential A (purely transverse, ∇ · A = 0). Finally,

H⊥
F =

1
2

∫
d3r

(
ε0Ȧ2(r) +

1
µ0

[∇× A(r)]2
)

(5)

is the Hamiltonian of the free field in vacuum. If one considers a neutral atom, the charge density

ρat(r) =
∑

j

Qjδ(r − rj), with
∑

j

Qj = 0, (6)

can be expressed as the divergence of a polarization density ρat(r) = −∇ · Pat(r). Here,

Pat(r) =
∑

j

qj

∫ 1

0
ds (rj − R)δ(r − R − s(rj − R)), (7)

where R is the center-of-mass coordinate [47]. The atomic polarization density allows us to express the
Coulomb interaction terms as follows

V‖
at =

1
2ε0

∫
d3r

(
P‖

at(r)
)2

, (8)

V‖
at−m =

1
ε0

∫
d3r P‖

at(r) · Π‖(r). (9)

Here, P‖
at is the longitudinal part of the polarization, i.e. the only component that determines the atomic

charge density, and Π‖ is the longitudinal displacement field of the medium, that satisfies

∇ · Π‖(r) = −
∑

µ

Qµδ(r − rµ). (10)

The latter is proportional to the Coulomb field E‖ = −Π‖/ε0 generated by the medium charges.

2.1. Minimal coupling
We now analyze the coupling between the atom and the electromagnetic field, which is a consequence of the
minimal coupling in the kinetic energy terms in equation (4). For an atom modeled as a point-like dipole, it
is possible to shift from the ‘p · A’ to the ‘r · E’ coupling representation, through the unitary transformation
exp(−iQr · A/!), where the vector potential is computed at the dipole center of mass [47]. The advantage
of this transformation lies in the fact that, in the transformed picture, the canonical momentum of a
particle coincides with its kinetic momentum and it is decoupled from the field variables (a thorough
discussion of the implications of such a feature is given in reference [47]).

In the case of a finite-size dipole, the aforementioned unitary transformation generalizes to the
Power–Zienau–Wolley (PZW) operator [46, 47]:

UPZW = exp

(
− i
!

∫
d3r Pat(r) · A(r)

)
= exp

(
− i
!

∫
d3r P⊥

at(r) · A⊥(r)

)
. (11)

3
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The transformation property UPZWΠ⊥(r)U†
PZW = Π⊥(r) + P⊥

at(r) yields two transverse-field terms from
equation (5)

V⊥
at =

1
2ε0

∫
d3r

(
P⊥

at(r)
)2

, V⊥
at−m =

1
ε0

∫
d3r P⊥

at(r) · Π⊥(r). (12)

These contributions are complementary to the ones in equations (8) and (9). The latter, as well as the
transverse part of the atomic polarization density, are instead left unchanged by the transformation.
Although originally Π⊥ = −ε0E⊥, the proportionality is lost after the transformation

Π(r) = −ε0UPZWE(r)U†
PZW − UPZWPat(r)U†

PZW, (13)

which can be shown using equation (10). For a finite-size dipole, the equality between the kinetic and
canonical momenta is not exactly realized in the transformed frame as in the case of a point-like dipole
transformation. The reason is that the transformed kinetic momentum

UPZW(pj + QjA(rj))U†
PZW = pj + Qj

∫ 1

0
ds s(rj − R)B(R + s(rj − R)) (14)

acquires an additional term, which generates a direct coupling between the charges and the magnetic field
B. Nevertheless, the difference between the two momenta in the transformed representation is suppressed
with respect to the analogous difference in the Coulomb gauge as the ratio between the atomic size and the
interacting light wavelength. Therefore, if one neglects the interaction with the magnetic field, it can be
consistently assumed that pj coincides with the jth particle kinetic momentum in the transformed
representation.

2.2. Medium-assisted electromagnetic field
The medium-assisted electromagnetic field is an effective model that conveniently describes, under certain
approximations, the combination of the medium and the field degrees of freedom, as pictured in figure 1.
The contributions to the medium-assisted Hamiltonian arise from the terms V‖

m, Tm and H⊥
F in the

Hamiltonian (1), as derived in detail in references [41, 48, 49]. The resulting effective field Hamiltonian,

Hm =

∫ ∞

0
dω

∫
d3r !ωf †(r,ω) · f (r,ω), (15)

can be expanded in three-component mode operators f (r,ω) and f †(r,ω), satisfying canonical
commutation relations

[
fk (r,ω) , f †

k′
(

r′,ω′)
]

= δkk′δ
(

r − r′
)
δ
(
ω − ω′) ,

[
fk (r,ω) , fk′

(
r′,ω′)] =

[
f †
k (r,ω) , f †

k′
(

r′,ω′)
]

= 0, (16)

with k = 1, 2, 3.
The displacement field Π and the vector potential A are related to the field variable f by

Πj(r) =

∫ ∞

0
dω

∫
d3r′

[
−i

ω2

c2

√
!ε0

π
εI(r′,ω)Gjk(r, r′,ω)fk(r′,ω) + H.c.

]
, (17)

Aj(r) =

∫ ∞

0
dω

∫
d3r′

[
ω

c2

√
!
πε0

εI(r′,ω)G⊥
jk (r, r′,ω)fk(r′,ω) + H.c.

]
, (18)

where εI is the imaginary part of the dielectric permittivity

ε(r,ω) = εR(r,ω) + iεI(r,ω). (19)

We have assumed that the medium is isotropic, hence the permittivity is a scalar. The Green tensor G
appearing in equation (17) is the solution of the equation [46]

[
∂j∂( − δj(

(
∇2 +

ω2

c2
ε(r,ω)

)]
G(k(r, r′,ω) = δjkδ(r − r′), (20)

and the term G⊥ in equation (18) represents its transverse part, satisfying ∂G⊥
(k(r, r′,ω)/∂r( = ∂G⊥

k(
(r′, r,ω)/∂r′( = 0. In the Coulomb gauge, the properties of the Green tensor and the analytic structure of

4
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ε(r,ω) in the complex frequency plane guarantee that the vector potential and the transverse part of the
displacement field satisfy the canonical commutation relations

[
Aj(r),Πk(r′)

]
= i!δ⊥jk (r − r′) = i!

∫
d3q

(2π)3

(
δj( −

qjq(
|q|2

)
eiq·(r−r′). (21)

For a translationally invariant medium, ε(r,ω) = ε(ω), thus the Green tensor depends only on the
coordinate difference, G(r, r′,ω) = G(r − r′,ω), and its Fourier transform

G̃jk(q,ω) =

∫
d3r Gjk(r,ω)e−iq·r , (22)

reads

G̃⊥
jk (q,ω) =

(
δj( −

qjq(
|q|2

)
G̃(k(q,ω) =

δjk − qjqk/|q|2

|q|2 − ω2ε(ω)/c2
,

G̃‖
jk(q,ω) =

qjq(
|q|2 G̃(k(q,ω) = −qjqk

|q|2
c2

ω2ε(ω)
. (23)

Hence, the displacement field reduces to

Πj(r) =

∫ ∞

0
dω

∫
d3q

(2π)3

[
−i

ω2

c2

√
!ε0

π
εI(ω)G̃jk(q,ω)f̃ k(q,ω)eiq·r + H.c.

]
, (24)

where the operators

f̃ (q,ω) =

∫
d3r f (r,ω)e−iq·r , (25)

satisfy
[f̃ j(q,ω), f̃ †

k(q′,ω′)] = (2π)3δjkδ(ω − ω′)δ(q − q′). (26)

For a point-like atomic system, singularities may arise in the interaction Hamiltonian due to the fact that
the quantities G‖(r,ω) and G⊥(r,ω) diverge as r → 0. In fact, while

ImG⊥
jk (0,ω) =

∫
d3q

(2π)3
ImG̃⊥

jk (q,ω) =
ω2εI(ω)

c2

∫
d3q

(2π)3

δjk − qjqk/|q|2
∣∣∣|q|2 − ω2ε(ω)

c2

∣∣∣
2 (27)

is finite and yields a well-defined transverse decay rate [41], Im G‖(r,ω) diverges as r → 0, due to the non
integrability of Im G̃‖

jk(q,ω) ∝ qjqk/|q|2, and a consistent treatment of the longitudinal decay rate requires
momentum regularization.

Techniques based on considering the source enclosed in an artificial cavity [40, 50, 51] have been
developed to cope with such singularities. In the following, we will tackle the divergences of the longitudinal
part with a less artificial approach, by considering the natural finite spatial extent of the atomic
wavefunctions. This will allow us to unambiguously analyze the role of the asymmetry of the atomic states
on the emission process.

2.3. Total Hamiltonian
From the previous parts of this section it follows that

H = Hat + Hel
int + Hmag

int + Hm. (28)

Here,

Hat = H0
at + Vat =

∑

j

p2
j

2mj
+

1
2ε0

∫
d3r(Pat(r))2 (29)

is the atomic Hamiltonian,

Hel
int =

1
ε0

∫
d3r Pat(r) · Π(r) =

1
ε0

∑

j

Qj(rj − R) ·
∫

dsΠ(R + s(rj − R)) (30)

represents the interaction of the atomic system with the electric field, and

5
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Hmag
int =

∑

j

{
Qj

mj
pj ·

∫ 1

0
ds s(rj − R)B(R + s(rj − R))

+
Q2

j

2mj

[∫ 1

0
ds s(rj − R)B(R + s(rj − R))

]2
}

(31)

stands for the coupling with the magnetic field. The term Hm generally represents the Hamiltonian of the
medium, that can be modeled in different ways, e.g. through the medium-assisted field Hamiltonian (15),
as shown in section 2.2. In the following part of this work we will neglect the magnetic contribution to the
interaction. Now we model the atom of the general theory as an electric dipole of charge Q, with a heavy
positive charge at the fixed position R = 0 and a moving negative charge of coordinate −r and mass m. As a
result, one finds the final form of the interaction Hamiltonian

Hdip
int =

Q
ε0

r ·
∫ 1

0
dsΠ(−sr), (32)

representing the correct generalization of the ‘r · E’ Hamiltonian to an extended (non point-like) dipole.
The expression (17) of the displacement field Π in terms of the Green tensor in the Hamiltonian Hdip

int
provides a new accurate and general approach. In the following examples we apply the general theory in the
simple case of a homogeneous medium. However, by exploiting the tensor structure one can consider
various geometries of the host medium, in particular interfaces of different dimensions or photonic
nanostructures. The use of the Green’s tensor leads to a divergent field at the position of the point-like
quantum system. This divergence is usually removed in a somewhat artificial way by introducing virtual
cavities or form factors. Here, the renormalization procedure is based on the physical size and orientation of
the extended system represented with wavefunctions. It allows us to accurately describe the physics of the
system without artefacts. This is one of the main findings of this work, that arises as a connection between
first-principle QED, represented through the canonical commutation relations, and the medium-assisted
field ruled by equation (16).

3. Emission properties of a bound system of charges

According to the results of the previous section, each eigenstate of the internal atomic Hamiltonian is
dressed by the surrounding medium. We now characterize the single-photon emission process and the
Lamb shift of an atomic level in a medium-assisted photonic environment in a translationally invariant
medium.

Consider an atom in an arbitrary environment, i.e. a dispersive medium of any geometry and material.
Let |a〉 and |b〉 be two orthogonal eigenstates of the free atomic Hamiltonian Hat, characterized by

Hat|a〉 = Ea|a〉, Hat|b〉 = Eb|b〉. (33)

The atom–photon interaction is described by the matrix element

Mab
j (r,ω) = 〈a|Hdip

int f †
j (r,ω)|b〉, (34)

which, for a translationally-invariant medium, can be expressed in the Fourier space through

M̃ab
j (q,ω) = 〈a|Hdip

int f̃ †
j (q,ω)|b〉 = −iC(ω)

ω2

c2

∑

k

G̃jk(q,ω)〈a|rk

∫ 1

0
ds e−isq·r|b〉, (35)

where

C(ω) = Q

√
!εI(ω)
8π4ε0

.

If we insert the expression of G̃jk in equation (23) and exploit the orthogonality between longitudinal and
transverse projectors, we obtain

Tab(q,ω) =
3∑

j=1

∣∣∣M̃ab
j (q,ω)

∣∣∣
2

=
C(ω)2

|ε(ω)|2

[
D(|q|,ω)Gab(q) + (1 − D(|q|,ω))

|Fab(q) − δab|2

|q|2

]
, (36)

6
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where δab = 〈a|b〉 = 1 if |a〉 and |b〉 coincide and 0 otherwise, with

D(q,ω) =

∣∣∣∣1 − q2c2

ω2ε(ω)

∣∣∣∣
−2

, (37)

Fab(q) = 〈a|e−iq·r|b〉 =

∫
d3r ψ∗

a (r)ψb(r)e−iq·r , (38)

Gab(q) =
3∑

j=1

∣∣∣∣〈a|rj
e−iq·r − 1

q · r
|b〉

∣∣∣∣
2

. (39)

The quantity defined in equation (36) determines both the total decay rate of the state |a〉 and its energy
shift. The former can be evaluated according to the Fermi golden rule

Γa =
2π
!
∑

b

∫ ∞

0
dωδ(!ω − !ωab)Tab(ω) =

2π
!2

∑

b %=a

θ(ωab)Tab(ωab)

=
2π
!2

∑

b %=a

θ(ωab)
C(ωab)2

|ε(ωab)|2

∫
d3q

[
D(|q|,ωab)Gab(q) + (1 − D(|q|,ωab))

|Fab(q)|2

|q|2

]
, (40)

with

ωab =
Ea − Eb

! , Tab(ω) =

∫
d3q Tab(q,ω), (41)

and θ(x) being the Heaviside step function. The absence of a contribution from state |a〉 in the sum over
states in the second equality of equation (40), albeit reasonable, is not a trivial result. Therefore, replacing
equation (36) in the evaluation of the decay rate δab = 0 and the apparent divergence in the term
proportional to Fab is regularized by the wavefunctions spatial extension. Note that the two terms in
equation (40) proportional to D(q,ω) correspond to the transverse contribution, while the remaining one is
the longitudinal contribution responsible for non-radiative decay, because it is related to the absorption
losses in the dielectric host medium.

In vacuum (ε(ω) = 1), the decay rate in equation (40) becomes

Γ(vac)
a =

Q2q3

8π2!ε0

∫

S2
d2S(n)

∑

b %=a

[
Gab(qn) − |Fab(qn)|2

q2

]
, (42)

where q = ωab/c and the integration is over the unit sphere n ∈ S2. Note that in the point-dipole limit the
quantity Fab tends to δab. In this way, we recover the familiar Weisskopf–Wigner result [52].

The frequency shifts of the atomic levels should be determined using equations (36)–(41), through

∆a =
1
!2

∑

b

P
∫ ∞

0
dω

Tab(ω)
ω − ωab

, (43)

with P
∫

denoting principal value integration. For a = b the function Tab contains the state-independent,
non-integrable term

δabC(ω)2|q|−2(1 − D(|q|,ω)) ∼ |q|−2 as |q| →∞, (44)

which provides a divergent contribution to Taa(ω). However, this contribution is also independent of the
state, representing therefore the effect of a uniform energy shift. Physical quantities such as the perturbed
transition frequency

ω̃ab = ωab + ∆a −∆b = ωab +
1
!2

P
∫ ∞

0
dω

[
Taa(ω) − Tbb(ω)

ω

+ 2ωab
Tab(ω)
ω2 − ω2

ab

+
∑

c %=a,b

(
Tac(ω)
ω − ωac

− Tbc(ω)
ω − ωbc

)

 (45)

are thus independent of the divergent term given in (44). Indeed, notice that, in the time domain the
low-energy behavior of the dielectric permittivity is

ε(ω) = 1 +

∫ ∞

0
dtχ(t) + iω

∫ ∞

0
dt tχ(t) + O(ω2), (46)

where χ(t) is the medium susceptibility with finite moments. This implies that Tab(ω) ∼ ω close to the
origin, and therefore the integration of the term (Taa − Tbb)/ω in equation (45) is well defined.

7
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3.1. Asymmetric two-level atom
The parity asymmetry of the atomic Hamiltonian eigenstates, reflected by the presence of nonvanishing
expectation values of one or more components of r, affects the state-dependent quantities Fab and Gab,
which appear in the expression of Tab(ω) and determine the decay rate Γa and the energy shift ∆a. In a
two-level atomic system, the three components of the Hermitian position operator r can be represented by
spin operators [52, 53]

r = ρ1 + δσz + rabσx, σx = |a〉〈b| + |b〉〈a|, σz = |a〉〈a| − |b〉〈b| (47)

acting on the two-dimensional space spanned by |a〉, |b〉, with

ρ =
〈a|r|a〉 + 〈b|r|b〉

2
, (48)

δ =
〈a|r|a〉 − 〈b|r|b〉

2
, (49)

rab = 〈a|r|b〉 = 〈b|r|a〉. (50)

In the two-level case, the off-diagonal matrix element (50) can be made real and non-negative by absorbing
a phase factor in the definition of one of the states.

The functions that determine the decay rate from |a〉 to |b〉 read

Fab(q) = −ie−iq·ρq · rab sinc(A(q)),

Gab(q) =

∣∣∣∣∇q

[
q · rab

∫ 1

0
ds sinc(sA(q))e−isq·ρ

]∣∣∣∣
2

, (51)

with sinc(x) = sin(x)/x and A(q) =
√

(q · rab)2 + (q · δ)2.
From these results, one can observe that the physical quantities computed from Gab and from the square

modulus of Fab are invariant with respect to the inversions ρ→−ρ and δ →−δ, but both depend on
diagonal entries ρ and δ which play the role of the asymmetric contributions.

To identify the lowest-order contributions to the decay rate, let us perform a small-q expansion of the
functions appearing in the expression (36) of Tab for a %= b, namely

|Fab(q)|2

|q|2 0 (q · rab)2

|q|2

(
1 − (q · rab)2 + (q · δ)2

6

)
, (52)

and

Gab(q) 0 |rab|2
(

1 − (q · rab)2

3
+

(q · δ)2

9
+

(q · ρ)2

12

)

+
|ρ|2(q · rab)2

4
+ (q · rab)rab ·

(
(q · ρ)ρ

2
− (q · δ)δ

9

)
. (53)

While the first-order contributions are regular, the second-order approximation in q of the functions in
equations (52) and (53) yield divergent integrals, that should be regularized by a cutoff Λq, roughly
corresponding to the inverse spatial size of the involved wavefunctions, that can range from 1 to 100 nm
according to the considered system. Clearly, this cutoff is not needed if one uses the expressions in
equation (51), that contain all orders in q. Based on the approximations (52) and (53), one can estimate
that the corrections entailed by an asymmetry of the states |a〉 and |b〉 are of order (Λq|raa|)2 and (Λq|rbb|)2.
Notice that the asymmetry corrections compete with terms of order (Λq|rab|)2, representing the first
corrections to the point-dipole result, and are not characterized by a definite sign.

4. Test beds

In this section, we apply the theory to two systems: a hydrogen atom in a static electric field and an
asymmetric quantum well (QW). We shall focus on the dependence of spontaneous emission on their
spatial asymmetry and on the embedding in an absorptive medium.

4.1. Hydrogen atom in a static electric field
The first example we consider is a hydrogen atom embedded in a homogeneous medium. The asymmetry of
this system is related to the presence of a static electric field E , whose polarization defines the quantization

8
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Figure 2. Energies of hydrogen atom eigenstates as functions of a static electric field. Labels, in the spectroscopic notation, are
referred to the dominant contribution for E → 0. As the field strength increases, the label states mixed with orthogonal
Clebsch–Gordan states (see figure 3). Each line corresponds to a pair of states with fixed |mj|.

axis. The asymmetry can be classically explained by a shift of the electronic cloud with respect to the
nucleus. As a result, the eigenstates of the system perturbed by the field correspond to superpositions of
wavefunctions

|ψ(E)〉 =
∑

nlms

bnlms (E) |ψnlm〉 ⊗ |χs〉 (54)

of a bare hydrogen atom, where the orbital wavefunction |ψnlm〉 is characterized by the principal (n),
angular (l) and magnetic (m) quantum numbers, and |χs〉 represent the spin up (down) state for s = +
(s = −). Equivalently, the same state can be decomposed in the Clebsch–Gordan basis

|ψ(E)〉 =
∑

nljmj

cnljmj (E) |φnljmj 〉, (55)

with j the total angular momentum and mj its projection on the third axis. Clebsch–Gordan states
corresponding to n = 1, 2, on which the following analysis will be focused, read

|φ10 1
2

1
2
〉 = |ψ100〉 ⊗ |χ+〉,

|φ10 1
2
−1
2
〉 = |ψ100〉 ⊗ |χ−〉,

|φ20 1
2

1
2
〉 = |ψ200〉 ⊗ |χ+〉,

|φ20 1
2
−1
2
〉 = |ψ200〉 ⊗ |χ−〉,

|φ21 1
2

1
2
〉 =

√
2
3
|ψ211〉 ⊗ |χ−〉 −

√
1
3
|ψ210〉 ⊗ |χ+〉,

|φ21 1
2
−1
2
〉 = −

√
2
3
|ψ211〉 ⊗ |χ+〉 +

√
1
3
|ψ210〉 ⊗ |χ−〉,

|φ21 3
2

3
2
〉 = |ψ211〉 ⊗ |χ+〉,

|φ21 3
2

1
2
〉 =

√
1
3
|ψ211〉 ⊗ |χ−〉 +

√
2
3
|ψ210〉 ⊗ |χ+〉,

|φ21 3
2
−1
2
〉 =

√
1
3
|ψ21−1〉 ⊗ |χ+〉 +

√
2
3
|ψ210〉 ⊗ |χ−〉,

|φ21 3
2
−3
2
〉 = |ψ21−1〉 ⊗ |χ−〉. (56)

Notice that states |φn0jmj 〉 and |φn1jmj 〉 correspond, in the spectroscopic notation, to nsj,mj and npj,mj ,
respectively. In our analysis we will adapt the discussion from reference [54] to the case of electric fields
weak enough to see its gradual influence on the eigenstates. As a consequence, the expansion coefficients
depend on the applied field as suggested above in equations (54) and (55). This result is achieved if the
corrections induced by the field are small with respect to the fine structure, and comparable with the Lamb
shift. In the opposite case of fields strong enough to overcome the fine structure, the eigenstates are fixed
and only their energies still depend on the field.

We will now identify the eigenstates in the weak-field regime, and discuss the evaluation of the
transition rate between a selected pair of these eigenstates. As anticipated, we restrict the analysis to the
n = 1, 2 manifolds and neglect the small impact of states with n > 2. If one neglects fine-structure splitting
and Lamb shift, the eigenenergies of the n = 1 and n = 2 sectors can be set to

9
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Figure 3. Expansion coefficients of the lowest-excited states (red line in figure 2) in terms of Clebsch–Gordan states [see
equation (55)]. The dots correspond to numerical solutions for selected values of field E . The solid line is a third-order
polynomial fit. The red line corresponds to the sum of squares of the three coefficients shown in the figure in blue, orange and
green. The sum differs from 1 by less than 0.0005 for the studied range of fields.

ε1 = −13.6
(
1 − 1

22

)
eV = −10.2 eV and ε2 = 0. The Hamiltonian H0, restricted to the sector spanned by

the Clebsch–Gordan basis, ordered as above, is diagonal in the absence of the field, while, in the general
case, it reads

H0 =





ε1 0 0 0 −b1V 0 0 b2V 0 0
0 ε1 0 0 0 b1V 0 0 b2V 0
0 0 ∆L 0

√
3V 0 0

√
6V 0 0

0 0 0 ∆L 0 −
√

3V 0 0
√

6V 0
−b1V 0

√
3V 0 0 0 0 0 0 0

0 b1V 0 −
√

3V 0 0 0 0 0 0
0 0 0 0 0 0 ∆FS 0 0 0

b2V 0
√

6V 0 0 0 0 ∆FS 0 0
0 b2V 0

√
6V 0 0 0 0 ∆FS 0

0 0 0 0 0 0 0 0 0 ∆FS





.

Here ∆FS = 44 µeV and ∆L = 4.4 µeV represent respectively the fine structure splitting and the Lamb shift
for hydrogen, and V = Eea0, with e the elementary charge and a0 the Bohr radius. The constants

b1 = 128
243

√
2
3 and b2 = 256

243

√
1
3 and other off-diagonal elements can be evaluated through an explicit

calculation of the corrections −Ee〈φ10jmj |z|φ21j′ ,mj′
〉.

Diagonalizing the above Hamiltonian, we find the eigenstates of the system. Our first observation is that
the eigenstates originating at the n = 1 manifold are barely distorted by the field, and their energy is shifted
by a correction of the order of peV. In the following analysis we neglect these corrections, both in the
eigenstate and in its energy. The dependence of eigenenergies of the n = 2 manifold on the field is shown in
figure 2, and again the influence of states from the n = 1 manifold is negligible. For this reason, from now
on we consider the Hamiltonian (57) with b1 = b2 = 0.

From figure 2 it is clear that the pair of lowest-excited states corresponds to the red line and simplifies to
the states 2p 1

2 ,|mj|= 1
2

in the absence of the field. The explicit expansion of these eigenstates in terms of
Clebsch–Gordan states and in function of the field is cumbersome. Instead, we find the expansion
coefficients numerically and fit them with third-order polynomial functions of E (figure 3). For positive E ,
the expansion coefficients are

|ψle, mj〉 = c21 1
2 mj

|φ21 1
2 mj

〉 + c20 1
2 mj

|φ20 1
2 mj

〉 + c21 3
2 mj

|φ21 3
2 mj

〉, (with mj = ±1/2)

c21 1
2 mj

(E) ≈ 1 − 1.28 × 10−7 m
eV

E − 2.20 × 10−10
( m

eV

)2
E2 + 3.49 × 10−15

( m
eV

)3
E3

c20 1
2 mj

(E) ≈ −2.20 × 10−5 m
eV

E + 2.17 × 10−10
( m

eV

)2
E2 + 5.10 × 10−16

( m
eV

)3
E3

c21 3
2 mj

(E) ≈ 1.19 × 10−9 m
eV

E + 6.58 × 10−11
( m

eV

)2
E2 − 7.63 × 10−16

( m
eV

)3
E3 (57)

where the subscript ‘le’ stands for ‘lowest-excited’. With the third-order expansion, the state is normalized
to 1 with error smaller than 0.05% for E < 35 keV m−1.

There are four possible transitions between a doubly-degenerate excited and a doubly-degenerate
ground state. We now select two example transitions among them, namely (i) the transition between the
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Figure 4. Panels (a) and (b): spontaneous emission rates from the lowest excited state |ψa〉 [equation (58)] to the ground state
corresponding to spin down (a) or up (b), of a hydrogen atom embedded in a medium with permittivity ε = 2.411 + iεI and
subject to a static electric field E oriented along the quantization axis. The emission rate is normalized to the value at a vanishing
electric field and εI = 3.2 × 10−3. Panels (c) and (d): squared expansion coefficients of the state |ψa〉 in terms of bare hydrogen
eigenstates. Please see the notation in equation (58).

excited and ground states with mj = − 1
2

|ψa〉 = |ψle, mj=− 1
2
〉 = b200 −1

2
(E)|ψ200〉 ⊗ |χ−〉 + b210 −1

2
(E)|ψ210〉 ⊗ |χ−〉

+ b211 1
2
(E)|ψ211〉 ⊗ |χ+〉 + b21−1 1

2
(E)|ψ21−1〉 ⊗ |χ+〉, (58)

|ψb〉 = |φ10 1
2
−1
2
〉 = |ψ100〉 ⊗ |χ−〉, (59)

with

b200 −1
2

(E) = c20 1
2
−1
2

(E) (60)

b210 −1
2

(E) =

√
1
3

c21 1
2
−1
2

(E) +

√
2
3

c21 3
2
−1
2

(E) (61)

b211 1
2
(E) = −

√
2
3

c21 1
2
−1
2

(E) (62)

b21−1 1
2
(E) =

√
1
3

c21 3
2
−1
2

(E) (63)

and (ii) the transition between the same ψa and ψ′
b = φ10 1

2
1
2

= ψ100χ+. Please note that, with the
approximations described above, the ground state always has a fixed spin, while the excited state has
contributions from both spin directions. In each case, the spin-changing transition elements vanish
identically.

As the host medium, we consider a glass with the real part of the permittivity εR = 2.411 [58]. The
imaginary part of glass permittivity εI is physically negligible. For demonstration purposes, we will consider
the rather broad range εI ∈ (10−3, 10−1).

We now evaluate Γa applying the theory developed in section 3 and leading to equation (40). The
spontaneous emission rates for both transitions are displayed as functions of the external field E and the
imaginary part of the permittivity εI in figures 4(a) and (b). As the asymmetry grows the transition rate is
reduced in both cases, which is due to the increasing contribution of the ‘dark’ component ψ200

[figures 4(c) and (d)]: a transition between |ψ200〉 and |ψ100〉 is electric-dipole forbidden. We observe that
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the emission weakly depends on the absorption coefficient and slightly drops for larger values of the
latter.

We remark that, albeit these results have been obtained under the assumption of a homogeneous
medium, which does not fully describe the physics of a system as small as a hydrogen atom, our analysis
captures crucial information on the trends of the relevant physical quantities.

4.2. Asymmetric quantum well
We evaluate here the decay rate for a semiconductor QW. We consider the case of a symmetric and an
asymmetric QW embedded in the same surrounding material.

The considered QW consists of aluminium indium arsenide with different molar fractions (AlxIn1−xAs
and AlzIn1−zAs) and gallium indium arsenide (GayIn1−yAs), with x = 0.46, y = 0.48, z = 0.47, respectively.
The well has a finite length a. The effective mass in the three regions is m = 0.043me, m = 0.045me and
m = 0.078me, respectively, where me is the electron mass. By varying the molar fractions it is possible to
modify the height of potential barriers VL/R on the left/right side of the QW, and consequently confine the
electron along the x-direction with a potential [55]

V (x) =






VL for x < −a/2

0 for − a/2 ! x ! a/2

VR for x > a/2.

(64)

Motion along the transverse (y, z) directions is loosely bound; for simplicity, we will assume a weak
harmonic confinement along those directions. The asymmetry of the system is related to the nonvanishing
value of VR − VL along the x-axis. In GaInAs, VR = 520 meV and VL can be tuned with a sensitivity of
3 meV [56, 57]. The energy spectrum is determined by the following equation

a

√
2mE
!2

= nπ − arcsin

√
E

VL
− arcsin

√
E

VR
, (65)

where n = 1, 2 correspond to the ground and the excited state, respectively. By tuning VL, one can set the
energy gap between the two lowest levels. We set the QW width a to ensure the absence of a third bound
level, as shown in figure 5, and approximate our dynamics with the one of a two-level system. Typically, a
can be controlled with a precision of half a constant lattice 0.3 nm [56]. The wavefunctions ψn,
corresponding to the energy eigenvalues En, with n " 1, are given by

Ψn(x) = cn






sin(δn)eαnL(x+ a
2 ) for x < −a

2
sin(βn(x +

a
2

) + δn) for − a
2
! x ! a

2
sin(aβn + δn)e−αnR(x− a

2 ) for x >
a
2

, (66)

where αnR(nL) =
√

2m
(
VR(L) − En

)
/!, βn =

√
2mEn/!, δn = arccot

(
αnL/βn

)
and cn is a normalization

constant.
The structure of the QW entails a trade-off between its width and the resonance wavelength λ (see

figure 6) corresponding to the energy gap. The larger the width a, the larger the resonant wavelength, but
the complex part of the permittivity becomes drastically smaller. This yields a medium that is practically
transparent. For GaInAs, the relative permittivity is given by εR = 11.638 and εI = 0.024 082 at the
resonance energy gap of 161.917 meV determined by VL = 430 meV.

We consider the spontaneous transition between two states a and b, characterized by the wavefunctions

ψa(r) = Ψ2(−x)
e−

y2+z2

4σ2

√
2πσ2

, ψb(r) = Ψ1(−x)
e−

y2+z2

4σ2

√
2πσ2

, (67)

where the Gaussian part in the (y, z) variables is related to the weak harmonic transverse confinement. Since
the transverse wavefunction is the same for a and b, the matrix elements of the dipole moment only have
components along x:

e

(
xaa xab

xba xbb

)
=

(
0.007 0.213
0.213 0.0153

)
ea0, (68)

with e = 1.60 × 10−19 C the electron charge and a0 = 5.29 × 10−11 m the Bohr radius.
Unlike the case of the hydrogen atom, discussed in section 4.1, here both functions are characterized by

a finite dipole moment. In order to highlight the specific effects of the average dipole moment of the two
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Figure 5. Graphical representation of equation (65). The dashed line represents the function g(E) = a
√

2mE/!2 [left-hand side
of equation (65)], while the equally spaced solid lines represent nπ − f(E), where f (E) = arcsin

√
E/VL + arcsin

√
E/VR

[right-hand side of equation (65)], for n = 1, 2, 3. The two intersections determine the eigenvalues E1 and E2. In this graph, the
choice of the potentials VL and VR maximizes the width a while keeping the number of bound energy levels equal to 2.

Figure 6. Resonant wavelength λ = 2π!c/(E2 − E1) corresponding to the excitation energy from the ground state to the first
excited state of the potential 64, as a function of the width of the QW for VL = VR = 430 meV.

states [see equation (48)], we will consider an approximation in which the wavefunctions (66) are replaced
by harmonic oscillator eigenfunctions, both characterized by the same permanent dipole moment
µ = exaa = exbb. The frequency ωho of the harmonic oscillator is fixed in such a way that !ωho matches the
excitation energy from the ground state to the first excited state of the QW. The permanent dipole µ for the
harmonic oscillator is obtained by shifting its wavefunctions along the x-axis such that µ = 0.0153ea0.
Hence,

Ψ1 (−x) 0
e
− (x+xaa)2

4σ2
x

4
√

2πσ2
x

, Ψ2 (−x) 0
x + xaa

σx

e
− (x+d)2

4σ2
x

4
√

2πσ2
x

(69)

with σ2
x = !/ (2mωho). We obtain the decay rates Γ(d = −0.0153ea0) = 3.297 08 × 1015 s−1 and

Γ(d = 0) = 3.297 73 × 1015 s−1, yielding a 0.02% increase of the asymmetric case compared to the
symmetric one, of the same order of the ratio d/(ea0) [see equations (52) and (53) and comments thereto].
In figure 7, we show the results for the spontaneous emission rate with varying d and εI, at fixed
εR = 11.638 of gallium indium arsenide [59]. In vacuum (ε→ 1), the relative contribution of the
asymmetry to the total decay rate becomes less relevant. Furthermore, to highlight the specific effect of a
finite dipole moment, we show in figure 8 the ratio between the value of the decay rate as a function of d
and its value for d = 0, corresponding to a fixed εI.
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Figure 7. Ratio of the spontaneous emission rate Γ over the symmetric and non dispersive one Γ(0, 0), as a function of d/a0 and
εI and at fixed εR = 11.638. The red dots represent the values of Γ mentioned in the text for the approximated QW at εI = 0.024
with d = 0 and d = −0.0153ea0.

Figure 8. The ratio of the decay rate Γ(d/a0, εI)/Γ(0, εI) as a function of d/a0 show the variation of the asymmetry for different
dispersion media with εI = 0.001 (solid line), εI = 2 (dashed line) and εI = 2.75 (dotted line).

5. Conclusions

We have expressed a light–matter interaction Hamiltonian in terms of the Green tensor propagator, in a
novel approach that avoids the usual divergence related to the approximation of a point-like atomic
quantum system. The divergence was lifted via the inclusion of the wavefunctions, providing in this way a
natural cutoff for the system investigated. This enabled us to study the dynamics of a charged system
coupled to a medium-assisted electric field, beyond the point-dipole approximation, highlighting the role
played by the finite size of the system, the dispersion and absorption by the medium and the spatial
asymmetries. The analysis focused on the determination of the decay rates and energy shifts of the bound
states of the ‘atomic’ system, which have been obtained under general assumptions. The most important
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among these assumptions is the hypothesis of homogeneous and isotropic media. We also discussed how to
extend the theory to more general situations.

The obtained results were applied to two test-beds: a microscopic one, represented by a hydrogen atom
subject to a uniform electric field, and a mesoscopic one, consisting of a quasi-electron in a semiconductor
QW. In both cases, we have obtained the decay rates as functions of the asymmetry of the system and the
absorption of the medium, showing that asymmetry can yield small but detectable deviations with respect
to the symmetric case.

Future research will be devoted to a thorough treatment of medium inhomogeneity and anisotropy and,
in particular, to the inclusion of effects due to the medium granularity, which implies a further length scale
and momentum cutoff, competing with those related to the atomic system size.
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[20] Rivera N, Kaminer I, Zhen B, Joannopoulos J D and Soljačíc M 2016 Shrinking light to allow forbidden transitions on the atomic

scale Science 353 263–9
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[50] Juzeliūnas G 1997 Spontaneous emission in absorbing dielectrics: a microscopic approach Phys. Rev. A 55 R4015
[51] Scheel S, Knöll L, Welsch D-G and Barnett S M 1999 Quantum local-field corrections and spontaneous decay Phys. Rev. A 60

1590
[52] Cohen-Tannoudji C, Dupont-Roc J and Grynberg G 1998 Atom-Photon Interactions: Basic Processes and Applications (New York:

Wiley)
[53] Feynman R P, Leighton R B and Sands M 1964 The Feynman Lectures on Physics (Reading, MA: Addison-Wesley)
[54] Cohen-Tannoudji C, Diu B and Laloe F 1977 Quantum Mechanics (New York: Wiley)
[55] Landau L D and Lifshitz E M 1981 Quantum Mechanics: Non-Relativistic Theory 3rd edn (Portsmouth, NH: Heinemann)
[56] Scamarcio G, Capasso F, Sirtori C, Faist J, Hutchinson A L, Sivco D L and Cho A Y 1997 High-power infrared (8-micrometer

wavelength) superlattice lasers Science 276 773–6
[57] Vitiello M S, Gresch T, Lops A, Spagnolo V, Scamarcio G, Hoyler N, Giovannini M and Faist J 2007 Influence of InAs, AlAs δ

layers on the optical, electronic, and thermal characteristics of strain-compensated GaInAs/AlInAs quantum-cascade lasers Appl.
Phys. Lett. 91 161111

[58] Schott Optical Glass Data Sheets (https://refractiveindex.info/download/data/2017/schott_2017-01-20.pdf) Accessed: 18
November 2020

[59] Adachi S 1989 Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1−xAs, and In1−xGaxAsyP1−y J. Appl. Phys.
66 6030–40

16

https://doi.org/10.1038/s41598-020-62629-0
https://doi.org/10.1038/s41598-020-62629-0
https://doi.org/10.1103/physrevlett.102.023601
https://doi.org/10.1103/physrevlett.102.023601
https://doi.org/10.1103/physreva.85.053818
https://doi.org/10.1103/physreva.85.053818
https://doi.org/10.1021/acsphotonics.7b00575
https://doi.org/10.1021/acsphotonics.7b00575
https://doi.org/10.1021/acsphotonics.7b00575
https://doi.org/10.1021/acsphotonics.7b00575
https://doi.org/10.1103/physreva.93.023831
https://doi.org/10.1103/physreva.93.023831
https://arxiv.org/abs/1601.01511
https://doi.org/10.1103/physreva.88.043811
https://doi.org/10.1103/physreva.88.043811
https://doi.org/10.1063/1.4825320
https://doi.org/10.1063/1.4825320
https://doi.org/10.1109/jphot.2009.2025329
https://doi.org/10.1109/jphot.2009.2025329
https://doi.org/10.1109/jphot.2009.2025329
https://doi.org/10.1109/jphot.2009.2025329
https://doi.org/10.1021/ja01849a007
https://doi.org/10.1021/ja01849a007
https://doi.org/10.1021/ja01849a007
https://doi.org/10.1021/ja01849a007
https://doi.org/10.1002/mrm.1910400314
https://doi.org/10.1002/mrm.1910400314
https://doi.org/10.1002/mrm.1910400314
https://doi.org/10.1002/mrm.1910400314
https://arxiv.org/abs/quant-ph/0309006
https://doi.org/10.1016/j.physrep.2013.02.001
https://doi.org/10.1016/j.physrep.2013.02.001
https://doi.org/10.1016/j.physrep.2013.02.001
https://doi.org/10.1016/j.physrep.2013.02.001
https://doi.org/10.1038/nature02230
https://doi.org/10.1038/nature02230
https://doi.org/10.1038/nature02230
https://doi.org/10.1038/nature02230
https://doi.org/10.1103/revmodphys.89.035002
https://doi.org/10.1103/revmodphys.89.035002
https://arxiv.org/abs/physics/0409072
https://doi.org/10.1103/physreva.60.4094
https://doi.org/10.1103/physreva.60.4094
https://doi.org/10.1103/physreva.60.4094
https://doi.org/10.1103/physreva.60.4094
https://doi.org/10.1088/0953-4075/29/16/019
https://doi.org/10.1088/0953-4075/29/16/019
https://doi.org/10.1364/josab.10.001620
https://doi.org/10.1364/josab.10.001620
https://doi.org/10.1103/physreva.46.4306
https://doi.org/10.1103/physreva.46.4306
https://doi.org/10.1103/physreva.46.4306
https://doi.org/10.1103/physreva.46.4306
https://doi.org/10.1103/physreva.62.053804
https://doi.org/10.1103/physreva.62.053804
https://doi.org/10.1103/physreva.55.r4015
https://doi.org/10.1103/physreva.55.r4015
https://doi.org/10.1103/physreva.60.1590
https://doi.org/10.1103/physreva.60.1590
https://doi.org/10.1126/science.276.5313.773
https://doi.org/10.1126/science.276.5313.773
https://doi.org/10.1126/science.276.5313.773
https://doi.org/10.1126/science.276.5313.773
https://doi.org/10.1063/1.2798061
https://doi.org/10.1063/1.2798061
https://refractiveindex.info/download/data/2017/schott_2017-01-20.pdf
https://doi.org/10.1063/1.343580
https://doi.org/10.1063/1.343580
https://doi.org/10.1063/1.343580
https://doi.org/10.1063/1.343580

	Light interaction with extended quantum systems in dispersive media
	1.  Introduction
	2.  Hamiltonian
	2.1.  Minimal coupling
	2.2.  Medium-assisted electromagnetic field
	2.3.  Total Hamiltonian

	3.  Emission properties of a bound system of charges
	3.1.  Asymmetric two-level atom

	4.  Test beds
	4.1.  Hydrogen atom in a static electric field
	4.2.  Asymmetric quantum well

	5.  Conclusions
	Acknowledgments
	ORCID iDs
	References


