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Abstract
We explore the features of an equally-spaced array of two-level quantum emitters, that can be
either natural atoms (or molecules) or artificial atoms, coupled to a field with a single continuous
degree of freedom (such as an electromagnetic mode propagating in a waveguide). We investigate
the existence and characteristics of bound states, in which a single excitation is shared among the
emitters and the field. We focus on bound states in the continuum, occurring in correspondence of
excitation energies in which a single excited emitter would decay. We characterize such bound
states for an arbitrary number of emitters, and obtain two main results, both ascribable to the
presence of evanescent fields. First, the excitation profile of the emitter states is a sinusoidal wave.
Second, we discuss the emergence of multimers, consisting in subsets of emitters separated by two
lattice spacings in which the electromagnetic field is approximately vanishing.

1. Introduction

Cooperative effects play an important role in the behavior and time evolution of quantum systems. The
emission of light by well-separated atoms and molecules is uncorrelated, so that the states of a single
quantum emitter determines the main characteristics of radiation. On the other hand, when quantum
interference effects become important, typically in closely packed ensembles of emitters, cooperative effects
take over and drastically modify the features of the emitted radiation. Typically, such effects compete with
the dephasing induced by the dipole–dipole interactions.

In this scenario, among the most interesting phenomena there are certainly super- and sub-radiance, by
which the spontaneous emission of radiation in a transition between two atomic levels leads to coherent
emission by an atomic ensemble, enhancing [1–3] or reducing [4] the decay rate. Clearly, these effects bear
a profound influence on the formulation of the state of the radiating system. Since super- and sub-radiance
are general phenomena, that can be observed also in large quantum systems, such as artificial atoms,
quantum dots [5] and superconducting circuits [6], we will keep our discussion as general as possible, and
refer generically to quantum ‘emitters’ of radiation.

On the other hand, light scattering by cold atomic clouds can induce photon-mediated effective
long-range interactions between atoms, leading to cooperative effects even at low atomic densities. While
superradiance has been extensively studied since Dicke’s seminal proposal [1], subradiance in large cold
atom clouds has been observed only rather recently [7, 8]. Although these phenomena take place at light
wavelengths that are typically much larger than interatomic distances [9, 10], a number of interesting
quantum resonance effects appear at shorter wavelengths, comparable to the distance among atoms.

The present investigation pertains to the latter regime. Recent advances in quantum technologies have
made possible the realization of novel experimental platforms, in which light propagation is (effectively)
one-dimensional. These platforms make use of a wide variety of coherent quantum systems, ranging from
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Figure 1. Schematic representation of the physical system: an array of two-level atoms, labeled by the index j, are characterized
by a ground state |gj〉 and an excited state |ej〉, separated by the energy ε. The atoms are placed at equal distances d and coupled to
a linear waveguide mode.

optical fibers [11, 12], cold atomic systems [13–15], and superconducting qubits [16–21], to photonic
crystals [22–26], and quantum dots in photonic nanowires [27, 28].

One of the most interesting features of such 1D systems is the presence of single-excitation bound states
in the continuum (BICs) [29, 30]. Such states represent an extreme case of subradiance, where the
excitation is shared in a stable way between the emitters and the field, so that radiation is completely
trapped by the emitters even though the energy would be sufficient to yield photon propagation. The
physical characteristics of quantum emitters in waveguides has been studied in a variety of situations, for
single [13, 20, 31, 32] as well as double and multiple emitters [4, 26, 33–62]. In all cases, the quantum
correlations between the emitters are due to the 1D photonic field.

The case of n = 3 and n = 4 emitters, analyzed via a non-perturbative treatment based on the
Friedrichs–Lee model [63–66], was studied in [67]. The role of non-perturbative photon-mediated
interactions between emitters was shown to be crucial to find the correct bound states.

In this article, we will apply this formalism to find an explicit expression for the BICs for an arbitrary
number n of emitters. We will focus on the global state of the emitters and will show that their excitation
amplitude profile follows a sinusoidal law: single-excitation BICs are therefore excitation waves, conceptually
analogous to the stationary spin waves emerging in 1D magnetic models [68–70]. We will also unearth the
presence of multimerization: under suitable conditions, the excitation amplitude displays a modular
repetition of quasi-decoupled components. One might expect that multimers arise independently of each
other: by contrast, we shall see that the evanescent fields that are present between adjacent multimers play a
crucial role. Our procedure will be based on a nearest-neighbor approximation for the inter-emitter
interactions and will hold under very general assumptions.

The paper is structured as follows. In section 2 we present the model, introduce its propagator matrix,
and discuss its role in the evaluation of the BICs. In section 3 we determine the structure of the BICs for an
arbitrary number of emitters. Finally, in section 4, we discuss the emergence of multimerized states and find
a condition for constructing new BICs by arranging together smaller building blocks.

2. The model

In this section, after first introducing in subsection 2.1 the basic features of the model to be investigated, we
show in subsection 2.2 how the BICs in the single-excitation sector can be conveniently described via the
propagator matrix. The method outlined in this section will be then applied in section 3.

2.1. Generalities
We consider a system of n identical two-level emitters, with excitation energy ε, equally spaced at a distance
d (see figure 1), with ground and excited states |gj〉 and |ej〉, coupled to a bosonic field with energy profile
ω(k). The Hamiltonian reads

H = H0 + Hint, (1)

where

H0 = ε
n∑

j=1

σ+
j σ−

j +

∫
dkω(k)b†(k)b(k) (2)

is the free Hamiltonian and

Hint =
n∑

j=1

∫
dk

[
F(k)e−i(j−1)kdσ−

j ⊗ b†(k) + H.c.
]

(3)

the interaction. In the above formulas, σ−
j = |gj〉〈ej| and σ+

j = |ej〉〈gj| are the lowering and raising operators

of the jth emitter, and b†(k), b(k) are the photon creation and annihilation operators, satisfying the
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canonical commutation relations [b(k), b(k′)] = 0, [b(k), b†(k′)] = δkk′ . The interaction has a rotating-wave
form, with F(k) being the form factor that describes the coupling of the emitters with a boson of
momentum k.4

In order to proceed, some assumptions about the functions ω(k) and F(k) will be needed. A concrete
example is represented by an array of two-level atoms coupled with a single transverse mode of the
electromagnetic field in a linear waveguide. We assume a dispersion relation of the form

ω(k) =
√

k2 + m2, (4)

expressed in natural units. In the case of a waveguide with rectangular cross section, whose sides are related
by Lz < Ly, the ‘photon mass’ m is proportional to the inverse smaller size L−1

z [71]. The form factor in this
case reads

F(k) =

√
γ

2πω(k)
, (5)

where γ > 0 is a coupling constant. We shall focus henceforth on this case. However, as shown in appendix
B, the results that we shall discuss in the following turn out to be largely independent of the particular form
of the coupling F(k) and the dispersion relation ω(k). We remark that, in order to simplify the computation,
it is a common choice to replace F(k) with a constant form factor, and assign linear dispersion relations to
left- and right-propagating photons (see, e.g. references [41, 72]). Although such an approximation is able
to describe bound states in the continuum, it fails to capture non-Markovian effects [73], such as those
which constitute the most relevant phenomenology presented in this work.

Observe that the rotating-wave form of the interaction Hamiltonian entails that the total number of
excitations

N =
n∑

j=1

σ+
j σ−

j +

∫
dk b†(k)b(k) (6)

is conserved, [H, N ] = 0. In the single-excitation sector N = 1, the state vectors read

|Ψ〉 =
n∑

j=1

aj|ej〉 ⊗ |vac〉 + |g〉 ⊗
∫

dk ξ̃(k) b†(k)|vac〉, (7)

where |vac〉 is the field vacuum state,

|g〉 = |g1〉 ⊗ |g2〉 ⊗ · · · ⊗ |gn〉, |ej〉 = σ+
j |g〉, ξ̃(k) =

∫
dx√
2π

ξ(x)e−ikx, (8)

and a ∈ Cn, ξ ∈ L2(R) are constrained by the normalization condition

n∑

j=1

|aj|2 +

∫
|ξ(x)|2dx = 1. (9)

Here, the vector a = (a1, . . . , an)ᵀ is the excitation amplitude profile of the emitters and ξ(x) the photon
wavefunction.

2.2. Propagator and bound states
The single-excitation sector was investigated for n = 2, 3, 4 atoms in references [36, 37] and shown to
contain, for generic dispersion relations and form factors (in particular, for those given in equations (4) and
(5)) and for selected interatomic distances, nontrivial atom–photon bound states. Our main objective is to
extend these results to arbitrary n and unearth genuine collective effects.

Bound states are given by the solutions of the equation

H|Ψ〉 = E|Ψ〉 (10)

for some real energy E, with |Ψ〉 as in equation (7) and normalized as in equation (9), for some a and ξ(x).
In particular, bound states with energy E > ω(0) are bound states in the continuum (BICs), since they are
embedded in the continuous set of the field frequencies.

4 In general, the coupling between each emitter and the field may be described by a coupling function Fj(k), but, since the emitters are
identical, Fj(k) = F(k)e−i(j−1)kd . Indeed, in the position representation the coupling function of the jth emitter, placed at position xj in
the waveguide, must be given by Fj(x) = F(x − xj) for some function F(x). In our case, xj = (j − 1)d and a Fourier transform yields
the result.
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Table 1. Summary table of the quantities introduced in section 2.

Quantity Description Definition

ε Excitation energy of the emitters —
d Distance between consecutive emitters —
ω(k) Dispersion relation of the boson continuum (4)
m Lower bound of the continuum (mass cutoff) m = ω(0)
F(k) Form factor (5)
k(E) Positive solution of ω(k) = E —
G−1(E),G−1

j( (E) Propagator of the model, and its (j, ()th element (11)
β j−((E) Correction to G−1

j( (E) (B.26)
ξ1(x) Single-emitter wavefunction (17)
η(x) Correction to ξ1(x) (C.7)

As shown in appendix A, the content of equation (10) can be rephrased as follows. We consider the
propagator matrix of the model, which we compute in appendix B:

G−1
j( (E) = (ε− E)δj( +

∫
dk

|F(k)|2

E + i0 − ω(k)
ei( j−()kd

= (ε− E)δj( − 2πi
|F(k(E))|2

ω′(k(E))
ei| j−(|k(E)d + βj−((E), (11)

where k(E) is the positive solution of ω(k) = E, i.e. the momentum of a photon with energy E, and βj(E) a
real-valued function satisfying ∣∣βj(E)

∣∣ ! e−| j |md |β0(E)| . (12)

Interestingly, all terms βj(E) would vanish if we chose a linear dispersion relation and a constant form
factor, namely ω(k) = ω0 + v(k − k0) and F(k) = F0. However, any more accurate physical model with a
correction to the linear-dispersion-relation approximation and/or the flat-coupling approximation will give
nonvanishing values of βj(E). This is a crucial point: despite these terms being (for j )= 0) exponentially
small in md, they will play a fundamental role in determining the very structure of the BICs, as we will see
in the next sections.

Then, a real energy E is an eigenvalue in equation (10) if

det G−1(E) = 0; (13)

this energy will corresponds to a BICs if E > ω(0). As shown in appendices A and C, a corresponding
eigenstate |Ψ〉 is such that

• The vector of atomic excitation amplitudes a = (a1, a2, . . . , an)ᵀ is a solution of the matrix equation

G−1(E) a = 0, (14)

with the additional constraint

F(k(E))
n∑

j=1

aj e±i(j−1)k(E)d = 0; (15)

• The wavefunction ξ(x) is

ξ(x) =
1√
2π

∫
dk

F(k)
E − ω(k)

n∑

j=1

aj ei(x−( j−1)d)k

=
n∑

j=1

aj ξ1
(
x − (j − 1)d

)
, (16)

where

ξ1(x) =
√

2π
F(k(E))
ω′(k(E))

sin
(
k(E)|x|

)
+ η(x), (17)

with the correction η(x) being real and satisfying

|η(x)| ! e−m|x||η(0)|. (18)

Equation (16) shows that the photon wavefunction ξ(x) corresponding to a BIC with energy E is a linear
combination of n copies of ξ1(x), each centered at one of the emitters, xj = ( j − 1)d: the contribution of
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Figure 2. An example: configuration with n = 3 emitters in positions x = 0, d, 2d, in which a1 = a2, a3 = 0 and the oscillating
part of the field is confined between the atoms that share the excitation. If there were no evanescent contributions, the field
would be exactly confined between the first two emitters and the resulting two-emitter state would be stable, regardless of the
presence of the third emitter at x = 2d. However, the presence of an evanescent field, which couples with the third emitter, causes
instability, as it tends to transfer the excitation to the third emitter, and eventually to decay.

each emitter is weighted by the corresponding component of a. Again, the term η(x), which physically
corresponds to a small evanescent field, would again vanish if we would take a linear approximation of the
dispersion relation. All relevant quantities are summarized in table 1.

Summing up, in order to compute the BICs emerging in our model, we need to solve equations (13) and
(14), with the propagator matrix being given by equation (11); once we solve this problem, thus finding the
admissible energies E of the BICs and the corresponding excitation profiles a, the associated photon
wavefunction is given by equation (16). The next section will be devoted to this problem.

3. Structure of the bound states in the continuum

The evaluation of BICs for an array of quantum emitters was performed, under less general hypotheses, in
reference [36] for n = 2 emitters and in reference [67] for n = 3, 4 emitters. When n > 4, the eigensystem
becomes more and more involved because of the presence of the terms βj−((E) in the expression of the
propagator, whose number grows with n.

At the physical level, these terms may interpreted as (field-mediated) inter-emitter interaction terms.
Even though these terms are exponentially suppressed in md, and hence ‘small’ in the physically interesting
regime md * 1, their role turns out to be fundamental: without these contributions the eigensystem would
be degenerate and no preferred set of stable emitter configurations would be found, while, when taking into
account the additional terms, such degeneracy is lifted.

This phenomenon can be better understood when looking at the photon wavefunction associated with a
given emitter configuration: as shown in equation (17), the latter will be the sum of a dominant sinusoidal
contribution plus an evanescent contribution η(x), given by equation (18). Albeit small, such tails are not
confined and induce field-mediated coupling among all emitters, which causes instability unless particular
configurations are chosen. An example is displayed in figure 2: emitter configurations in which only two
neighboring emitters resonate, with the other ones ‘switched off’, are not allowed even though the state
would be stable in the absence of the other emitters.

Therefore, a generic BIC in a multi-atom array is expected to be a collective state: the excitation on the
BICs must be distributed in a very specific way along the whole array, and must be chosen in such a way
that the effects of all such fields even out, yielding a stable state.

In the absence of evanescent field one would have a manifold of degenerate local solutions with the same
energy E, consisting of radiation trapped between pairs of emitters, that could be pasted together in an
arbitrary way. However, in the presence of evanescent fields, most of these states are unstable, and only a
few selected ones emerge as stable configurations. The role of the evanescent fields is to select collective
stable states. In particular, even those emitters (if any) which have zero amplitude and thus are decoupled
from the field must be placed at specific positions along the chain (namely, the nodes of the field), and, in
this sense, they also cooperate to yield the overall stability of the state. We will see this selection mechanism
at work in stabilizing multimer configurations in section 4.

The heuristic discussion above will be supported by calculations. Collective configurations will emerge
as a natural consequence of the structure of the propagator: we will prove that the atomic excitation
amplitudes in a stable configuration are interpolated by (either exact or ‘deformed’) sinusoidal functions,
providing an interesting analogy with the stationary spin waves that emerge in the Heisenberg model
[68–70].

5



New J. Phys. 23 (2021) 103033 D Lonigro et al

Table 2. Given a system of n emitters, n − 1 BICs at
energy E = Eν (exact excitation waves) or E ≈ Eν

(deformed excitation waves) can emerge, each for a specific
value of the excitation energy ε of the emitters. The jth
BIC, ordered by increasing frequency, will be exact or
deformed depending on whether n, ν and j are even or
odd. Notice that either the first (j = 1) or the last (j = n)
sinusoidal excitation wave, for ν even or odd, respectively,
will not have any deformed counterpart as eigenvector of
the propagator: the corresponding eigenvector will be an
unstable state whose eigenvalue has a large imaginary part,
i.e. a superradiant state.

n even n odd

j even j odd j even j odd

ν even a(j) ã(j) (j )= 1) a(j) ã(j)
ν (j )= 1)

ν odd ã(j)
ν (j )= n) a(j) a(j) ã(j)

ν (j )= n)

The present section is organized as follows:

• In subsection 3.1 we present the idea on which the computation of BICs is based;

• In subsection 3.2 we will sum up the evaluation of the energies of all possible BICs and their
corresponding excitation profiles a, obtained as solutions of equation (14), with all details being
reported in appendix D;

• In subsection 3.3, after computing the photon wavefunctions ξ(x) corresponding to such profiles via
equation (16), we discuss our findings.

A particular feature of some BICs that comes out as a direct consequence of our discussion, namely the
presence of multimerized BICs, will be investigated in section 4.

3.1. A nearest-neighbor approximation
We shall search for bound states in the continuum with values of energy (close to) E = Eν , where we define
the νth resonant energy by

Eν = ω
(νπ

d

)
, ν ∈ N. (19)

This choice is motivated by the following observation: if we were to discard all terms βj−((E) with j )= ( in
the propagator (11), equation (13) would be satisfied if and only if E = Eν for some ν , and thus all BICs
would be found at such values of energy. Correspondingly, the system would exhibit an
(n − 1)-dimensional degenerate space of BICs with energy E = Eν . This phenomenon is extensively
discussed in reference [67] and, for completeness, revised in appendix D.3. As we have seen above, this is
the case for a linear dispersion relation and a flat form factor, when all β j(E) for j )= 0 vanish.

The degenerate situation outlined above is drastically modified when one takes into account the full
structure of the propagator, which is the case when one goes beyond the linear approximation. This
problem was already analyzed for the cases of n = 3 and n = 4 emitters [67], where it was shown that the
presence of nonvanishing off-diagonal terms βj−(, no matter how small, lifts the degeneracy: the available
BICs, with energy either equal or close to Eν , emerge for distinct, albeit close, values of ε. This means that
the system exhibits at most one truly stable BIC. Besides, as discussed in appendix D.2, BICs turn out to
have a well-defined parity.

When n > 4, the analytic study of the full structure of the propagator becomes unfeasible, and therefore
we need a way to extract information about the resonant degeneracy breaking patterns, while keeping
calculations viable. The basic idea is the following: since

βj(E)
β0(E)

= O
(

e−|j|md
)

, (20)

the off-diagonal terms with |j − (| > 1 are of higher order in e−md than those with |j − (| = 1, and
therefore, in order to study the degeneracy lifting at large md, it is enough to consider the first-order
approximation

β = (β1, . . . ,βn−1) ∼ (β1, 0, . . . , 0). (21)

Indeed, we will now show that the presence of the largest of such contributions, namely β1, is sufficient to
fully remove the n − 1 degeneracy and thus determine the nondegenerate BICs in the large md regime.
Physically, since βj−( is related to a field-mediated interaction involving the jth and (th emitter, the

6
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replacement (21) may be regarded as a nearest-neighbor approximation. Higher-order corrections in md
(that is, terms βj−((E) with |j − (| > 1) would only contribute by O(e−2md) corrections, without changing
the qualitative picture that we will outline.

3.2. Exact and deformed excitation waves
In the approximation discussed above, the propagator (11) of the model, evaluated at a resonant energy Eν

(19), can be written in a convenient form. By directly substituting E = Eν in (11), we get

G−1(Eν) = G−1
0 (Eν) − i β1(Eν)∆n, (22)

where

• G−1
0 (Eν) is the zeroth order approximation of the propagator, that is, the one that would be obtained

by discarding all terms β j−( with j )= (. By equation (11), it reads

G−1
0 (Eν) = (ε− Eν + β0(Eν)) In − 2πi

|F(k(Eν))|2

ω′(k(Eν))
uνuᵀ

ν , (23)

with uν = (1, (−1)ν , 1, (−1)ν, . . . )ᵀ.

• ∆n is the n × n matrix defined by

∆n =





0 1
1 0 1

1 0 1
. . .

. . .
. . .

1 0 1
1 0 1

1 0





, (24)

and corresponds to the adjacency matrix (discrete Laplacian) of a one-dimensional regular graph
[74, 75] with Dirichlet boundary conditions. Its main properties are recalled in appendix E.

Consequently, when taking into account the role of the terms β1(E) in the propagator (physically,
nearest-neighbor photon-mediated interactions between the emitters), we are perturbing the original
propagator G−1

0 (E) with a multiple of the matrix ∆n. Despite the latter term being exponentially small in
md (recall equation (12)), it does crucially affect the solutions of equation (13), since it lifts the degeneracy
of the original problem and allows us to individuate an unambiguous set of solutions each corresponding to
a BIC emerging at an energy (close to) Eν when the excitation energy ε has a certain value.

This problem is studied in appendix D.4, to which we refer for details. We will present here the results.
First of all, for all j = 1, . . . , n, define the quantities χ(j) and a(j) via

χ(j) = 2 cos

(
πj

n + 1

)
, a(j)

( =
1
Nj

sin

(
j(π

n + 1

)
, (25)

where Nj is a normalization constant. These are the eigenvalues and eigenvectors of the matrix ∆n, as
shown in appendix E; in particular, the eigenstates of ∆n can be obtained by a sampling at the
equally-spaced points x( = ((− 1)d of sine functions with wavelength

λj =
2(n + 1)d

j
. (26)

We will refer to the eigenvectors a(j) of ∆n as excitation waves. In analogy with the two branches of phonon
modes in lattices, we will label excitation waves with low and high frequency as acoustic (consecutive
amplitudes in phase) and optical modes (consecutive amplitudes in phase opposition), respectively.

The BICs of the model are then characterized as follows:

• . n
2 / BICs can emerge at an energy E = Eν : each of them corresponds exactly to one of the sinusoidal

waves a(j), with j ranging on either even or odd integers as described in table 2. Each of these BICs is
‘switched on’ when the excitation energy ε of the emitters has exactly the value

ε = Eν −
(
β0(Eν) + β1(Eν)χ(j)

)
. (27)

• 0 n
2 1 BICs can emerge at an energy E ≈ Eν : the corresponding excitation profile is a ‘deformed’

excitation wave ã(j) = a(j) + δ(j), with j ranging on remaining integers, the deformation to be

7
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Figure 3. Acoustic (upper panels) and optical (lower panels) excitation amplitudes for a system of n = 30 emitters in BICs with
E = E1. Red points at the end of red bars represent the atomic excitation amplitudes a(j)

( , while the solid blue curve represents the
dimensionless field excitation amplitude ξ(x)/W(E1), with W(E1) as in equation (30). Both quantities reported on the vertical
axis are expressed in units of ‖a(j)‖. The value of each amplitude a(j)

( is related to the discontinuity of the first derivative of the
field ξ(x) at the position of the (th emitter, so that each excited emitter induces a jump in the derivative of the photon
wavefunction. (a) j = 1. (b) j = 2. (c) j = 28. (d) j = 29.

evaluated numerically (see figures D2 and D3 in appendix D.4). Each of these BICs is ‘switched on’
when the excitation energy ε of the emitters has a value

ε ≈ Eν −
(
β0(Eν) + β1(Eν)χ(j)

)
, (28)

to be evaluated numerically as well.
The first result follows easily from equations (22) and (23): if the excitation wave a(j) satisfies

uν · a(j) = 0, then necessarily G−1(Eν)a(j) = 0 provided that equation (27) holds. The second result is
nontrivial. We refer to appendix D.4 for details.

The physical situation can be described as follows. In order to steadily sustain a BIC, the n emitters must
collectively share a part of the excitation following any of the sinusoidal amplitude waves with wavelength
(26): depending on the values of ν and n, waves with a given parity (either even or odd) will be exact, and
waves with the converse parity will be distorted in order to support a stationary excitation of the photon
field.

3.3. Discussion of the results
Once we have computed the amplitude waves that can sustain a BIC at energies (close to) Eν , equations (16)
and (17) give directly the associated photon wavefunction. Figures 3 and 4 display, for n = 30, and E = E1

and E = E2, respectively, the simplest acoustic and optical atomic excitation waves that emerge in the
emitter array, together with the associated field wavefunction ξ(x), in properly normalized units. Under our
assumptions, the photon wavefunction (18) is largely dominated by the contribution of the single pole at
k(E). By neglecting the small η term, it reads, in correspondence of the E = Eν resonance,

ξ(j)(x) 3 W(Eν)
n∑

(=1

a(j)
( sin

(
νπ|x − ((− 1)d|

)
, (29)

8
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Figure 4. Acoustic (upper panels) and optical (lower panels) excitation amplitudes for a system of n = 30 emitters in BICs with
E = E2. Red points at the end of red bars represent the atomic excitation amplitudes a(j)

( , while the solid blue curve represents the
dimensionless field excitation amplitude ξ(x)/W(E2), with W(E2) as in equation (30). Both quantities reported on the vertical
axis are expressed in units of ‖a(j)‖. The value of each amplitude a(j)

( is related to the discontinuity of the first derivative of the
field ξ(x) at the position of the (th emitter, so that each excited emitter induces a jump in the derivative of the photon
wavefunction. (a) j = 2. (b) j = 3. (c) j = 29. (d) j = 30.

where

W(Eν) =
√

2π
F(k(Eν))
ω′(k(Eν))

. (30)

It is immediate to see that the contribution (29) to the photon amplitude vanishes identically outside the
emitter chain. The value of each a(j)

( is related to the discontinuity of the first derivative of ξ(x) at the
position of the (th emitter; in particular, the wavefunction is smooth in a neighborhood of the (th emitter if
and only if a(j)

( = 0. In practice, each excited emitter induces a jump, proportional to the excitation
amplitude, in the derivative of the photon wavefunction.

All these results are compatible with the ones for n = 3, 4 reported in [67].

4. Multimerization

This final section will be devoted to a better understanding of an interesting phenomenon, which emerges
in the structure of the BICs computed in section 3. A detailed scrutiny of the results brings to light a
multimerization effect: some BICs are characterized by a modular structure, in which the same excitation
amplitude configuration repeats for a certain number of times along the chain, with each ‘monomer’
separated from the adjacent one by an emitter in its ground state. In the upper panels of figure 5, the
configuration is a dimer, with the central emitter working as a dynamical mirror [36], by forcing the field
excitation amplitude to vanish at its position.

This phenomenon is more general: BICs can, in fact, split into more than two parts. A trimer and a
tetramer are shown in the lower panels of figure 5. All multimerized states appear to be composed of a
number r of identical monomers, made up of h emitters, separated by a single emitter in its ground state.
The number of components and the size of each component are related with n by

n = rh + r − 1. (31)

Moreover, each module is in itself a BIC for an array of h emitters.

9
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Figure 5. Examples of exactly resonant multimerized states with energy E = E1: for certain emitter configurations, the photon
wavefunction splits in two or more identical waves separated by emitters in the ground state. The number of monomers r, the
number of emitters h involved in a module, and the total number of emitters n, are related by n = rh + r − 1. Both quantities
reported on the vertical axis are expressed in units of ‖a(j)‖. (a) n = 7, r = 2, h = 3, j = 2. (b) n = 9, r = 2, h = 4, j = 1.
(c) n = 11, r = 3, h = 3, j = 3. (d) n = 23, r = 4, h = 5, j = 8.

We will interpret this interesting phenomenon as a direct consequence of a simple mathematical
property of the adjacency matrix ∆h in (24), and thus of the particular structure (22) of the propagator of
the model in the nearest-neighbor approximation.

4.1. Structure of multimers
Consider an integer h, and define two column vectors

xh = (0, 0, . . . , 0, 1)ᵀ, yh = (1, 0, . . . , 0, 0)ᵀ. (32)

Then, given n, r ∈ N with n = rh + (r − 1), and decomposing the space Cn as

Cn =

r times︷ ︸︸ ︷
(Ch ⊕ C) ⊕ (Ch ⊕ C) ⊕ · · · (Ch ⊕ C) ⊕ Ch, (33)

i.e. representing vectors A ∈ Cn as

A = (a(1), b(1), a(2), b(2), . . . , a(r−1), b(r−1), a(r))ᵀ, (34)

with a(1), . . . , a(r) ∈ Ch and b(1), . . . , b(r−1) ∈ C, the matrix ∆n with dimension n = rh + (r − 1) takes the
following block structure

∆n =





∆h xh

xᵀ
h 0 yᵀh

yh ∆h xh

xᵀ
h 0 yᵀh

yh ∆h xh

. . .
. . .

. . .
xᵀ

h 0 yᵀh
yh ∆h





, (35)

10
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with the rows of odd order acting onto the ‘vector’ components a(s) in (34) and the rows of even order
acting onto the ‘scalar’ ones b(s). In particular, if we consider a vector as in (34) with all scalar components
being zero, i.e.

A = (a(1), 0, a(2), 0, . . . , a(r−1), 0, a(r))ᵀ, (36)

one gets

∆nA =
(
∆ha(1), a(1)

h + a(2)
1 ,∆ha(2), a(2)

h + a(3)
1 , . . . , a(r−1)

h + a(r)
1 ,∆ha(r)

)ᵀ
. (37)

Therefore, an array characterized by a(s)
h = −a(s+1)

1 for all s = 1, . . . , r (i.e. with the first component of the
sth ‘block’ being the opposite of the last component of the (s − 1)th block), satisfies

∆nA =
(
∆ha(1), 0,∆ha(2), 0, . . . , 0,∆ha(r)

)ᵀ
. (38)

In such a case, the action of the n-dimensional matrix ∆n on the full array splits into the action of the
h-dimensional matrix ∆h on each block. As a direct consequence:

• If a ∈ Ch is an antisymmetric eigenvector of ∆h, then ah = −a1 and the vector

A = (a, 0, a, 0, a, 0, . . . )ᵀ (39)

is an eigenvector of ∆n with the same eigenvalue;

• If a ∈ Ch is a symmetric eigenvector of ∆h, then ah = a1 and the vector

A = (+a, 0,−a, 0, +a, 0, . . . )ᵀ (40)

is an eigenvector of ∆n with the same eigenvalue.
It is easy to show that the mathematical property outlined above, together with the expression (22) for

the propagator of the system in the nearest-neighbor approximation, does explain the multimerization
phenomenon outlined at the start of this section. As discussed in subsection 3.2 (also see table 2), an
h-emitter excitation wave a (i.e. an eigenvector of ∆h) with the ‘right’ parity, i.e. such that uν · a = 0,
satisfies

G−1(Eν)a = 0 (41)

provided equation (D.27) holds, and is thus associated with a BIC for a chain of h identical emitters. Now,
the n-component vector A defined either via equation (39) or equation (40) (depending on the value of ν)
is an eigenvector of ∆n with the same eigenvalue and, by construction, satisfies the condition Uν · A = 0,
with Uν being the n-component analogue of uν : consequently, it is an eigenstate of the propagator and thus
corresponds to a multimerized BIC for the n-emitter chain.

4.2. Discussion of the results
Our findings demonstrate that it is always possible to construct a multimerized BIC of n = rh + (r − 1)
emitters from smaller (building) blocks of h emitters, separated by single emitters that act as dynamical
mirrors. The rules for constructing such states are, nevertheless, very specific: the blocks must be equal and
the way of connecting them to each other must follow one of the prescriptions (39) and (40), depending on
their symmetry. These conditions are ultimately due to the small corrections to the propagator and the
wavefunctions due to the evanescent fields.

In the absence of evanescent fields, multimerized configurations could be constructed arbitrarily among
the infinite possibilities in a degenerate (n − 1)-dimensional eigenspace, by superposing ‘local’ excitations
involving few neighboring emitters: this is due to the fact that adjacent monomers would not interact with
each other, since no photon field would be present between them, and our model only involves
photon-mediated interactions. On the other hand, the presence of evanescent fields modifies the picture by
inducing interactions between adjacent monomers, thus making most of multimerized one-excitation states
unstable, and selecting only a few ones as stable configurations. Hence, the role of the evanescent fields is to
induce the emergence of collective stable states. In particular, our findings show that one emitter in its
ground state must be present between neighboring monomers in order to ensure stability: in this sense,
even the emitter that does not share the excitation cooperates with the rest of the system to form the bound
state.

5. Conclusions and outlook

We analyzed the emergence of BICs in a regular array of quantum emitters in a waveguide. BICs are present
for an arbitrary number of emitters, and the excitation profile of the emitter states is a sinusoidal wave. We

11
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also discussed the presence of multimers, separated by two regions in which there is practically no
electromagnetic field. A crucial role is played by the evanescent fields generated by quantum emitters in
determining the physical structure of bound states in the continuum.

The techniques adopted in this article hinge upon an analysis of the propagator and are intrinsically
non-perturbative. The main physical factor that limits the robustness of BICs is photon loss from the
waveguide: we did not discuss here these losses, but their effect can be estimated by applying standard
techniques based on the master equation.

The collective behavior unearthed in our analysis does not depend on the specific geometry of the
waveguide and the details of the dispersion relations, and is therefore valid for a number of physical
implementations. The identification of (manifolds of) states in which a single excitation is coherently
shared among distant artificial atoms enables one to analyze the features of long-range coherence, mediated
by the photon field, and could possibly provide a tool to control qubits at an arbitrary distance.

Moreover, the manifolds of long-lived states, whose lifetime is determined by the waveguide losses and
not by the atom–field coupling, can be used as quantum registers/memories [76] due to their dynamical
stability, in particular against spatially separated decoherence sources [77]. These features can make them
useful in hydrid situations [78, 79].

Finally, we mention that additional properties emerge when the emitters are confined in a finite
waveguide [80] or in two-dimensional geometries [81], or when topological effects contribute to the
robustness of the dressed states [82]. These situations and related aspects will be investigated in the future.
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Appendix A. Eigenvalue equation

In this appendix we derive the eigenvalue equations for BICs discussed in section 2. Consider the eigenvalue
equation

(H − E)|Ψ〉 = 0, (A.1)

where H is Hamiltonian (1)–(3) and |Ψ〉 state (7), and project it onto the basis vectors |ej〉 ⊗ |vac〉 and
|g〉 ⊗ b†(k)|vac〉. One gets

(ε− E)aj +

∫
dk F(k)ei(j−1)kd ξ̃(k) = 0,

(ω(k) − E)ξ̃(k) +
∑

(

F(k)e−i((−1)kda( = 0. (A.2)

The second equation gives

ξ̃(k) =
∑

(

F(k)
E − ω(k)

e−i((−1)kda(, if ω(k) )= E, (A.3)

and ∑

(

F(k)e−i((−1)kda( = 0, if ω(k) = E; (A.4)

these yield, respectively, equation (16) by a Fourier transform, and the constraint (15), which is needed in
order to make the integral in equation (16) well-defined.
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By plugging (A.3) into the first equation in (A.2) we get

(ε− E)aj +

∫
dk

∑

(

|F(k)|2

E − ω(k)
ei(j−()kd a( = 0, (A.5)

which, by defining G−1(E) as in equation (11), is equation (14). The latter equation admits nontrivial
solutions if and only if equation (13) holds.

Appendix B. Calculation of the propagator

In this appendix we will compute the propagator for our model, thus showing the second part of
equation (11). Let us introduce the self-energy matrix:

Σj((z) =

∫
dk

|F(k)|2

z − ω(k)
ei(j−()kd, Im z > 0, (B.1)

so that the propagator can now be expressed as

G−1(E) = (ε− E)In + Σ(E + i0). (B.2)

We will find an expression for the self-energy matrix (B.1), and thus for the propagator, under general
assumptions on the dispersion relation ω(k) and the coupling function F(k).

We make the following assumptions:

(a) ω(k) and f(k) = |F(k)|2 are even real-valued functions satisfying the integrability condition:

∫

R

f (k)
ω(k) + 1

dk < ∞; (B.3)

(b) ω′(k) > 0 for all k > 0, so that ω(k) is an increasing function for k > 0, and ω(0) > 0.

(c) ω(k) and f(k) have complex analytic continuations ω(κ), f(κ) in a strip
K = {k + iη : k ∈ R, η ∈ (−m, m)} of the complex plane and are continuous up to
∂K = (R + im) ∪ (R − im);

(d) The following conditions hold:

lim
|Re κ|→∞

f (κ)
ω(κ)

= 0, (B.4)

uniformly in the strip K, and ∫

R

| f (k + im)|
|ω(k + im)| + 1

dk < ∞; (B.5)

(e) There is an open connected set A ⊂ C containing the real half line (ω(0), +∞) such that, for z ∈ A,
the equation ω(κ) = z admits exactly two solutions in K;

We remark that an expression for the self-energy can be found without condition (c), and that the
discussion that follows can be extended to a nonmonotonic ω(k), provided that one looks for the
eigenvalues in an energy range (E1, E2) such that the equation ω(k) = E has a single positive real solution
for all E ∈ (E1, E2).

First of all, since both ω(k) and f(k) are even real-valued functions, i.e. satisfy, for all k ∈ R,

ω(−k) = ω(k), ω(k)∗ = ω(k); (B.6)

f (−k) = f (k), f (k)∗ = f (k) (B.7)

their analytic continuations ω(κ), f(κ) to the strip K of the complex plane, with K± = K ∩ C±, satisfy the
following symmetry properties:

ω(−κ) = ω(κ), ω(κ)∗ = ω(κ∗); (B.8)

f (−κ) = f (κ), f (κ)∗ = f (κ∗). (B.9)
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Figure B1. Representation of the integration contour and the analyticity strip in the complex κ plane. The integral over R (blue
lower line) equals the integral over R + im (red upper line) plus the residue of the integrand at the pole (red circle).

The self-energy matrix is defined for j, ( = 1, . . . , n and z ∈ C by

Σj((z) =

∫ ∞

−∞

f (k)
z − ω(k)

ei(j−()kd dk, (B.10)

and, because of the symmetry properties of the integrand, satisfies

Σj((z) = Σ(j(z) (B.11)

for all z ∈ C and j, ( = 1, . . . , n, so that we only need to compute it for j " ( or, equivalently, we can
substitute j − ( with | j − (|.

We will evaluate the integral

Σj((z) = lim
R→∞

∫ R

−R

f (k)
z − ω(k)

ei|j−(|kd dk (B.12)

through a contour integration in the complex plane (see figure B1), by closing the integration over [−R, R]
with a properly chosen curve and exploiting the residue theorem.

The integrand in (B.12) has poles at the solutions of the equation ω(κ) = z. Let us consider z ∈ A: since
ω(−κ) = ω(κ), by assumption (d) such solutions come in pairs ±κ(z). By the analyticity of ω(κ), they are
locally continuous and, moreover, analytic away from the critical points of ω(κ), i.e. the points at which
ω′(κ) = 0. Aside from such (countably many) points, each solution κ(z) is a simple pole for the integrand.

Choose R > 0 large enough so that the pair of poles is included in the rectangle

KR = {κ ∈ K : |Reκ| ! R} , (B.13)

and K±
R = KR ∩ C±. We will close the integration contour on the boundary of K+

R , consisting of two
horizontal segments, [−R, R] and [−R, R] + im, and two vertical segments, ±R + i[0, m]. For j = (, by
hypothesis (d) the integral on ∂K+ converges and there is no contribution from the vertical segments as
R →∞, hence

lim
R→∞

∫

∂K+
R

f (κ)
z − ω(κ)

dκ =

∫

∂K+

f (κ)
z − ω(κ)

dκ

=

∫

R

f (k)
z − ω(k)

dk −
∫

R

f (k + im)
z − ω(k + im)

dk. (B.14)

For j )= (, we have ∣∣∣∣
f (κ)

z − ω(κ)
ei|j−(|κd

∣∣∣∣ ! e− Imκ|j−(|d
∣∣∣∣

f (κ)
z − ω(κ)

∣∣∣∣ , (B.15)

and thus, ∣∣∣∣
∫

R+im

f (κ)
z − ω(κ)

ei|j−(|κddκ

∣∣∣∣ ! e−|j−(|md
∫

R

∣∣∣∣
f (k + im)

z − ω(k + im)

∣∣∣∣ dk < ∞, (B.16)

i.e. all off-diagonal contributions are finite as well and, moreover, exponentially suppressed in md.
The integral over the contour will equal the sum of the residua of all singularities enclosed by the

contour, that is, all solutions of the equation ω(κ) = z with positive imaginary part. By our assumptions,
for z ∈ A there is precisely one couple of singularities ±κ(z), with Imκ(z) > 0 for all z ∈ A ∩ C+, each
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being continuously linked with the corresponding real solution ±k(E) of the real equation ω(k) = E for
E > ω(0). Indeed, by taking into account the equation

ω(k + iη) = E + iδ, (B.17)

and expanding around the solution k(E) of the equation ω(k) = E with ω′(k(E)) > 0, we get

η ∼ δ

ω′(k(E))
, (B.18)

thus implying that the pole contained in the integration contour is +κ(z), as shown in figure B1.
By the residue theorem we thus have

∫

∂K+
gj((κ) dκ = Σj((z) −

∫

R
gj((k + im)dk = 2πi Res

(
gj(,κ(z)

)
, (B.19)

where

gj((κ) =
f (κ)

z − ω(κ)
ei|j−(|κd, (B.20)

and Res
(
gj(,κ(z)

)
denotes its residue at the pole κ(z). For all noncritical values of z, we have

z − ω(κ) ∼ −ω′(κ(z))(κ− κ(z)), as κ→ κ(z), (B.21)

hence

lim
κ→κ(z)

(κ− κ(z))
f (κ)

z − ω(κ)
= − f (κ(z))

ω′(κ(z))
(B.22)

and thus the residue is

Res
(
gj(,κ(z)

)
= − f (κ(z))

ω′(κ(z))
ei|j−(|κ(z)d. (B.23)

Thus we finally obtain the desired result: for all E > ω(0),

Σj((E + i0) = −iZ(E)ei|j−(|k(E)d + βj−((E), (B.24)

with a residue term

Z(E) = 2π
f (k(E))
ω′(k(E))

" 0, (B.25)

and a contour contribution

βj(E) = e−|j|md
∫

R

f (k + im)
E − ω(k + im)

ei|j|kd dk. (B.26)

Notice that βj(E) = βj(E)∗ is real, since by using the symmetry properties (B.9) it easy to see that the
integrand function has the symmetry gj((k + im)∗ = gj((−k + im). Therefore, the contour term gives a
contribution to the self-energy matrix Σ(E) which is real Hermitian, whereas the residue yields a
contribution which is non-Hermitian.

Appendix C. Calculation of the photon wavefunction

In this appendix we apply the results of appendix B in order to compute the integral in (16), which gives the
boson wavefunction ξ(x) in the position representation. From equation (16) we immediately get

ξ(x) =
n∑

j=1

ajξ1(x − (j − 1)d), (C.1)

where

ξ1(x) =
1√
2π

PV
∫

F(k)
E − ω(k)

eikx dk. (C.2)

By assuming that F(k) is real and has the same properties of f(k) in (a)–(d) of appendix B, we can write

ξ1(x) =
1
2

(Ξ(E + i0) + Ξ(E − i0)) , (C.3)

where

Ξ(z, x) =
1√
2π

∫
F(k)

z − ω(k)
eik|x| dk, (C.4)
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can be computed by the residue theorem. The computation is a carbon copy of the computation of the
self-energy in appendix B, and by replacing f(k) with F(k)/

√
2π in (B.24)–(B.26) one has

Ξ(E + i0) = −iW(E)eik(E)|x| + η(x), (C.5)

with a residue term

W(E) =
√

2π
F(k(E))
ω′(k(E))

, (C.6)

and a (real valued) contour contribution

η(x) = e−m|x| 1√
2π

∫

R

F(k + im)
E − ω(k + im)

eik|x| dk. (C.7)

Analogously one gets
Ξ(E − i0) = iW(E)e−ik(E)|x| + η(x), (C.8)

since for z = E − iδ the pole with positive imaginary part is −κ(z) and ω′(−k(E)) = −ω′ (k(E).
Finally, by plugging (C.5) and (C.8) into (C.3) we obtain

ξ1(x) = W(E) sin
(
k(E)|x|

)
+ η(x), (C.9)

with η(x) real and of order O(e−m|x|), that is the expression (17) in the main text.

Appendix D. Calculation of the BICs

In this appendix we will evaluate explicitly the bound states in the continuum in our model, thus proving
the results reported in section 3. The appendix is organized as follows:

• In appendix D.1 we rephrase the problem in a convenient form;

• In appendix D.2 we show that, because of the presence of corrections βj−((E) to the propagator, BICs
are predicted to have a definite parity;

• In appendix D.3 we briefly revise the problem in the approximation in which all contributions
βj−((E), j )= (, to the propagator in equation (11) are neglected: in this approximation, BICs emerge at
resonant energies E = Eν , ν = 0, 1, . . . , and for each of these values there is an (n − 1)-dimensional
space of degenerate BICs that are ‘switched on’ for the same value of the excitation energy ε of the
emitters;

• In appendix D.4 we refine our analysis by taking into account the largest correction β1(E) to the
propagator, showing that this correction alone is sufficient to lift the degeneracy: while BICs still
emerge (nearly) at resonant energies E = Eν , we will now be able to distinguish n − 1 nondegenerate
BICs, corresponding to distinct (albeit close) values of ε and to well-defined collective structures.

D.1. General strategy
Before getting started, let us rephrase equations (13) and (14) in a more compact way which will turn
largely useful for our purposes. We start by defining the two quantities

bj(E) =
βj(E)
Z(E)

, χ(E) =
ε− E
Z(E)

+ b0(E), (D.1)

with Z(E) as in equation (B.25). The propagator matrix G−1(E) in (11) can be written as

G−1(E) = −Z(E) (A (k(E)d, b(E)) − χ(E)In) , (D.2)

where we introduce the matrix A(θ, b) by

Aj((θ, b) =





i j = (

iei|j−(|θ − b|j−(| j )= (
, (D.3)

for j, ( = 1, . . . , n, b = (b1, . . . , bn−1). It is immediate to show that, by equation (D.2), the two
equations (13) and (14) correspond to an E-dependent eigenvalue and eigenvector problem for the matrix
A(θ, b), namely {

det [A (k(E)d, b(E)) − χ(E)In] = 0;

A (k(E)d, b(E)) a = χ(E)a.
(D.4)

In this way, the evaluation of the BICs can be performed as follows:
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(a) We search for the real eigenvalues χ̃(θ, b) of the matrix A(θ, b), evaluate the corresponding eigenvectors
a and check that the constraints (15), with k(E) = θ/d, are satisfied;

(b) We obtain the energies E of the corresponding BIC by solving the equation

χ(E) = χ̃ (k(E)d, b(E)) , (D.5)

with χ(E) as in equation (D.1);

(c) Finally, we obtain the photon amplitude of the eigenfunction by substituting the values of E and a in
(17).

D.2. Symmetry properties of the BICs
Even without explicitly solving the aforementioned problem, a fundamental property of BICs in our system
can be inferred by the structure of the matrix A(θ, b): indeed, for all j, ( = 1, . . . , n,

Aj((θ, b) = A|j−(|(θ, b), (D.6)

i.e. its entries are a function of the distance from the main diagonal. This is an immediate consequence of
the fact that the Hamiltonian (3) is parity-invariant and that the emitters are equally spaced. Consequently,
A(θ, b) is centrosymmetric, i.e. satisfies the property

[A, Jn] = 0, (D.7)

where Jn is the exchange matrix, i.e. the matrix having ones on the counterdiagonal

[Jn]j( =

{
1 if ( = n − j + 1

0 otherwise
(D.8)

and which admits ±1 as eigenvalues, with corresponding eigenvectors (a1, a2, . . . , an) satisfying

an−j+1 = aj for j = 1, . . . , n, (D.9)

or
an−j+1 = −aj, for j = 1, . . . , n, (D.10)

respectively. As a consequence, Jn and A always share a common basis of eigenvectors, which means that A
always admits a basis of eigenvectors that are either centrally symmetric or antisymmetric. Moreover, if the
eigenvalues of A are nondegenerate, then necessarily its corresponding eigenvectors will be centrally
symmetric or antisymmetric. Physically, this is caused by the presence of tails of the photon wavefunctions,
due to the fact that the dispersion relation is generally bounded from below and nonlinear. Though
exponentially suppressed in the interatomic distance, these tails couple with all the emitters of the
configuration, generally causing instability unless proper symmetry conditions are fulfilled [67].

Finally, we remark that the property discussed above is exact. While the explicit calculation of the BICs
in appendix D.4 is performed under a nearest-neighbor approximation (and does, indeed, yield eigenstates
with definite symmetry), taking into account higher-order terms, or even the full structure of the
propagator, would not spoil this property, which is thus more fundamental.

D.3. The degenerate case: resonance condition
As discussed in the main text, the terms bj−( in the matrix (D.3) are exponentially suppressed in |j − (|md,
and are therefore small in the physically meaningful regime. As a first approximation, one may simply
discard them and proceed with the study of the eigensystem of the matrix

Aj((θ, 0) = i ei|j−(|θ. (D.11)

This matrix admits real eigenvalues only if θ = νπ for some ν ∈ N, when it becomes the rank-one matrix
[67]

A(νπ, 0) = iuνuᵀ
ν , (D.12)

with
uν = (1, (−1)ν, 1, (−1)ν , . . . )ᵀ. (D.13)

The spectrum of A(νπ, 0) is thus composed of

• The simple eigenvalue χ̃ = in, associated with the one-dimensional eigenspace spanned by uν ;
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• The (n − 1)-degenerate eigenvalue χ̃ = 0, whose eigenspace contains all the atomic amplitudes a
orthogonal to uν :

uν · a = 0. (D.14)

While the eigenvector uν corresponds to an unstable (superradiant) state of the system, the eigenvectors
associated with the zero eigenvalue correspond to stable configurations of the system, which emerge if and
only if {

k(E)d = νπ, (ν ∈ N)

χ(E) = 0.
(D.15)

The first equation is a resonance condition: the emitter spacing d must be an integer multiple of the
half-wavelength π/k(E) corresponding to the energy E. Hence, if we define the resonant energies

Eν = ω
(νπ

d

)
, (ν ∈ N) (D.16)

a BIC with energy E exists if and only if {
E = Eν ,

χ(Eν) = 0.
(D.17)

Observe that by equation (D.1) the second condition reads

ε = Eν − Z(Eν)b0(Eν). (D.18)

As a consequence, a BIC emerges in the spectrum whenever its energy Eν equals the excitation energy ε of
the emitters (see figure 1) plus a coupling-dependent correction, that is small in the perturbative regime.

We remark that condition (D.14) reads, explicitly,

n∑

j=1

(−1)jνaj = 0. (D.19)

Due to degeneracy, no symmetry condition is imposed a priori onto the eigenvectors. Therefore, states in
which the excitation is shared only by two consecutive emitters with opposite amplitudes, such as those
depicted in figure 2, represent eigenstates as valid as the ones with central symmetry, provided the
evanescent fields are neglected.

D.4. Nearest-neighbor approximation: degeneracy lifting and excitation waves
As discussed in subsection 3.1, the degenerate situation outlined in appendix D.3 is drastically modified
when one takes into account the full structure of the self-energy and the propagator, and it suffices to only
take into account the correction b1(E) in order to understand the ‘direction’ in which the degeneracy is
broken.

In this case, an interesting structure emerges: adding the nearest-neighbor approximation to
equation (D.12), we obtain

A(νπ, b) = iuνuᵀ
ν − b1∆n, (D.20)

where ∆n is the n × n matrix in equation (24), whose properties are studied in appendix E. Equation (D.20)
means that, when taking into account the role of b1, the eigenproblem studied in appendix D.3 is perturbed
by a term which is proportional to the adjacency matrix ∆n. Since the unperturbed matrix A(νπ, 0) is
rank-one, and thus highly degenerate, its eigensystem will be crucially affected by the structure of the
perturbation, even for small b1.

Here, we are interested in the spectrum and eigenvectors of the matrix (D.20) in the limit b1 → 0, since
the nearest-neighbor approximation is physically valid when b1 is small. It is worth noticing that the
obtained results have an interesting universal character, being independent of the specific form of b1.

As shown in appendix E, the eigenvalues χ(j) of the matrix ∆n, with 1 ! j ! n, can be evaluated exactly,
see equation (25) in the main text: these are the sinusoidal excitation waves.

By applying the propagator at resonance, θ = νπ, we get,

A(νπ, b)a(j) = −b1χ
(j)a(j) + i

(
uν · a(j)

)
uν . (D.21)
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Figure D1. Scalar products uν · a(j) for n = 50 and n = 51 vs j. All values are normalized with respect to the maximal value of
the product. Nonvanishing values converge to zero either for small or large j: smaller values of the product correspond to smaller
deformations with respect to the corresponding sinusoidal shape. (a) n = 50, even ν. (b) n = 50, odd ν. (c) n = 51, even ν.
(d) n = 51, odd ν.

The excitation waves a(j) and the vector uν are related as follows:

• If n is even, then

uν · a(j) = 0 for even j + ν (D.22)

uν · a(j) )= 0 for odd j + ν (D.23)

• If n is odd, then

uν · a(j) = 0 for even j (D.24)

uν · a(j) )= 0 for odd j. (D.25)

Moreover, the products uν · a(j), even when nonvanishing, tend to become negligible for large (small) j,
when ν is even (odd), as reported in figure D1. This is due to the fact that neighboring excitation
amplitudes in a(j) tend to have the same sign for small j and opposite sign for large j. Therefore, the scalar
product with uν for even ν, which is a constant vector, tends to vanish for states with large j, while the
product with uν for odd ν , which is a staggered vector of ±1, is minimal for small j.

As a consequence,

• If n is even, then A(νπ, b) admits as eigenvectors the excitation waves with even j (respectively odd
j) iff ν is even (respectively odd);

• If n is odd, then A(νπ, b) admits as eigenvectors the excitation waves with even j, for both even and
odd ν ;

in the cases listed above, the excitation waves are also eigenvalues of the propagator at the resonance energy
Eν given by (D.16).

Gathering all cases together, we observe, for every value of n and ν, that . n
2 / out of the n excitation

waves are also eigenvectors of the propagator matrix, and thus correspond, for some excitation energy ε of
the emitters, to a bound state in the continuum with resonant energy E = Eν . Specifically, an admissible
BIC, according to the aforementioned criterion, is present in the spectrum of the Hamiltonian provided
that

χ(Eν) = χ(j), (D.26)
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Figure D2. The numerically determined eigenstates ã(j)
ν (open orange circles) of the matrix A(νπ, b), for n = 100 emitters and

even ν, are compared with the excitation waves a(j) (full blue circles), eigenstates of the nearest-neighbor adjacency matrix ∆n .
The upper and lower panels represent acoustic and optical waves, respectively. Eigenstates with even j coincide with the excitation
waves, while those with odd j are deformed. The effect of deformation is more relevant for acoustic waves than for optical waves.
Notice that the excitation wave with j = 1 corresponds to an eigenvalue with large imaginary part. The amplitude vectors a(j) and
ã(j)
ν are normalized to their respective square norms. (a) j = 2, exact excitation wave. (b) j = 3, deformed excitation wave.

(c) j = 99, deformed excitation wave. (d) j = 100, exact excitation wave.

and thus if and only if the excitation energy ε of the emitters satisfies

ε = Eν − Z(Eν)
(
b0(Eν) + b1(Eν)χ(j)

)
. (D.27)

Notice that, since the χ(j)’s are all distinct, in principle only one among the possible BICs will actually be a
stable state for the array, even though, in practice, all such states are expected to be long-lived, with an
O(e−md) lifetime.

The remaining 0 n
2 1 excitation waves are not eigenstates of the propagator, since they do not satisfy the

condition uν · a(j) = 0. A numerical analysis of the spectrum of the matrix A(νπ, b) for small b1 shows,
besides the already discussed . n

2 / exact excitation waves, the following features:

• One of the eigenvectors of A(νπ, b) correspond to a complex eigenvalue with a large imaginary part.
This state, characterized by j = 1 for even ν, and j = n for odd ν, represents a perturbation of the
unstable eigenvector uν of the matrix A(νπ, 0), with eigenvalue χ̃ = in.

• The remaining 0 n
2 1 − 1 eigenvectors are deformed versions of the excitation waves that do not exactly

satisfy the resonance condition. Their associated eigenvalues χ̃±,(j) have real parts independent of b1

and close to the eigenvalues χ(j) in equation (25), while they also acquire an imaginary part (namely, a
finite decay rate) that vanishes with b1.

Summarizing, as reported in table 2 in the main text and figures D2 and D3, the (n − 1)-dimensional
degenerate eigenspace associated with the zero eigenvalue of the approximate propagator A(νπ, 0) breaks
into n − 1 nondegenerate eigenvectors, . n

2 / of which are the exact sinusoidal waves that are orthogonal to
uν (i.e. they satisfy the resonance condition at θ = νπ), while the remaining ones are ‘deformed’ versions of
the sinusoidal waves that have a small [O(b1)] but finite projection onto uν . The jth deformed excitation
wave will be written as

ã(j)
ν = a(j) + δ(j)

ν , (D.28)

with δ(j)
ν being the deformation with respect to the jth exact sinusoidal wave.

We also remark that, due to the behavior of the product uν · a(j), the size of the deformation of the wave
crucially depends on j in an opposite way for the two cases (see figure D2):
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Figure D3. The numerically determined eigenstates ã(j)
ν (open orange circles) of the matrix A(νπ, b), for n = 100 emitters and

odd ν, are compared with the excitation waves a(j) (full blue circles), eigenstates of the nearest-neighbor adjacency matrix ∆n .
The upper and lower panels represent acoustic and optical waves, respectively. Eigenstates with odd j coincide with the excitation
waves, while those with even j are deformed. The effect of deformation is more relevant for optical waves than for acoustic waves.
Notice that the excitation wave with j = 100 corresponds to an eigenvalue with large imaginary part. The amplitude vectors a(j)

and ã(j)
ν are normalized to their respective square norms. (a) j = 1, exact excitation wave. (b) j = 2, deformed excitation wave.

(c) j = 98, deformed excitation wave. (d) j = 99, exact excitation wave.

• For even ν the deformation δ(j)
ν is larger for small j (i.e. for acoustic waves), while it becomes

negligible for large j (i.e. for optical waves);

• Conversely, for odd ν, the deformation δ(j)
ν is larger for large j (i.e. for optical waves), while it becomes

negligible for small j (i.e. for acoustic waves).
This is a natural consequence of the fact that, as shown in figure D1, for off-resonant excitation waves

the term uν · a(j) monotonically decays (increases) with j for even (odd) ν. In other words, the deformation
will be relevant only for acoustic waves if ν is even and for optical waves if ν is odd, for every value of n.

As already mentioned, the deformed waves described above correspond to eigenvalues with a finite
imaginary part, and therefore do not represent stable states. However, it is possible to find an actual BIC
with energy E 3 Eν such that

k(E)d = νπ + δk(E) d, with δθ = O(b1), (D.29)

close to each deformed wave. Moreover, since the imaginary parts of the deformed wave amplitudes are
negligible, as n increases they tend to coincide with very good approximation with the actual bound states,
and the condition (D.27) at which they appear in the spectrum is still valid.

Appendix E. Eigenvalues and eigenvectors of the adjacency matrix

Given n ∈ N, let ∆n be the adjacency matrix (24). In this appendix we will discuss the interpretation of the
eigenvalue problem for the adjacency matrix ∆n as a discrete boundary value problem for a
one-dimensional regular array, and evaluate its eigenvalues and eigenvectors.

We intend to solve the eigenvalue equation

∆na = χa, (E.1)

where χ ∈ R and a = (a1, . . . , an)ᵀ ∈ Cn. For this purpose, let us consider an array of n + 2 elements by
adding two fictitious nodes a0, an+1 at the extrema of the array a. By construction, the eigenvalue problem
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Figure E1. Excitation waves a(j), derived as eigenvectors of the matrix ∆n for n = 100 emitters. Plots in panels (a) and (b) are
acoustic modes, interpolated by sine functions with frequency j/(n + 1), while plots in panels (c) and (d) are optical modes,
oscillating between a sine function with frequency (n + 1 − j)/(n + 1) and its opposite. The amplitude vectors a(j) are
normalized to their square norms. (a) n = 100, j = 1. (b) n = 100, j = 4. (c) n = 100, j = 97. (d) n = 100, j = 100.

for the matrix ∆n is equivalent to a recurrence relation for the array a0, a1, . . . , ah, ah+1 with two boundary
conditions at the extremes of the array:

{
a(+1 = χ a( − a(−1, ( = 1, . . . , n,

a0 = an+1 = 0,
(E.2)

which can be interpreted as a discrete version of the Helmholtz equation with vanishing (Dirichlet)
boundary conditions.

The straightforward trigonometric identity

sin(( + 1)θ = 2 cos θ sin (θ − sin((− 1)θ, (E.3)

implies that if χ = 2 cos θ, then a( = sin (θ is a solution of the recurrence relations in (E.2) for
( = 1, . . . , n. The boundary condition at ( = 0, a0 = 0, is automatically satisfied, while the boundary
condition at ( = n + 1, an+1 = 0 fixes the admissible values of θ, and thus the eigenvalues of the original
problem, namely

sin(n + 1)θ = 0, (E.4)

that is θ(j) = jπ/(n + 1) with j = 1, . . . , n.
Since the adjacency ∆n is a symmetric matrix, with n real eigenvalues, we have obtained in this way its

full spectrum: the eigenvalues χ(j) and the eigenvectors a(j) = (a(j)
1 , . . . , a(j)

n )ᵀ, j = 1, . . . , n of ∆n read

χ(j) = 2 cos

(
jπ

n + 1

)
, (E.5)

a(j)
( =

1
Nj

sin

(
(

jπ
n + 1

)
, (E.6)

where ( = 1, . . . , n, and Nj is a suitable normalization coefficient.
Figure E1 shows the excitation waves a(j) for n = 100 emitters and selected values of j: while for small j

the excitation profiles can be best understood as the sampling of a sinusoidal function with wavelength λj,
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with in-phase consecutive amplitudes (acoustic waves), for high values of j the components of a(j) have
alternating signs and values that lie alternatively on two opposite sinusoidal functions with period
2d(n + 1)/(n + 1 − j) (optical waves)
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