7,559 research outputs found

    Experimental and analytical studies of a model helicopter rotor in hover

    Get PDF
    A benchmark test to aid the development of various rotor performance codes was conducted. Simultaneous blade pressure measurements and tip vortex surveys were made for a wide range of tip Mach numbers including the transonic flow regime. The measured tip vortex strength and geometry permit effective blade loading predictions when used as input to a prescribed wake lifting surface code. It is also shown that with proper inflow and boundary layer modeling, the supercritical flow regime can be accurately predicted

    Hydrometallurgy of the delta sulfide ores, first stage report

    Get PDF
    This report presents the results of hydrometallurgical research carried out from September 16, 1985 to June 30, 1986 on metals recovery from complex sulfide ores from the Delta deposit near Tok, Alaska. The leaching characteristics performed for 6 different ore samples indicate that the most valuable components form the following order: Zn > Au > Pb > Ag > Cu > So. Further study demonstrates that direct leaching of the ore is effective both in chloride as well as in sulfate oxidizing solutions coupled with separating of leached solid components by flotation. Three variants of the ore processing with ferric chloride or fenic sulfate leaching are analyzed: one flowsheet with direct ore leaching in ferric chloride solution followed by leaching-flotation step, with subsequent zinc separation in a solvent extraction step and electrolysis in chloride solution; and two flowsheets of direct ore leaching with ferric sulfate solution followed by a leaching-flotation step, with zinc sulfate electrolysis and other metals recovery in chloride leaching sreps. In two last flowsheets silver is recovered during the chloride leaching steps and gold h m flotation products during the cyanide leaching. Preliminary economic and technical evaluation is presented. The engineering study on apparatus for the fast leaching- flotation processing and on better accumulation of gold and silver in one semi-product are concluded for the next year of research

    Finite difference modeling of rotor flows including wake effects

    Get PDF
    Rotary wing finite difference methods are investigated. The main concern is the specification of boundary conditions to properly account for the effect of the wake on the blade. Examples are given of an approach where wake effects are introduced by specifying an equivalent angle of attack. An alternate approach is also given where discrete vortices are introduced into the finite difference grid. The resulting computations of hovering and high advance ratio cases compare well with experiment. Some consideration is also given to the modeling of low to moderate advance ratio flows

    Theory of minimum effort control

    Get PDF
    Optimum control theory formulations for solving problems in optimum guidance for interplanetary manned space flight mission

    An experimental investigation of the parallel blade-vortex interaction

    Get PDF
    A scheme for investigating the parallel blade vortex interaction (BVI) has been designed and tested. The scheme involves setting a vortex generator upstream of a nonlifting rotor so that the vortex interacts with the blade at the forward azimuth. The method has revealed two propagation mechanisms: a type C shock propagation from the leading edge induced by the vortex at high tip speeds, and a rapid but continuous pressure pulse associated with the proximity of the vortex to the leading edge. The latter is thought to be the more important source. The effects of Mach number and vortex proximity are discussed

    The structure of trailing vortices generated by model rotor blades

    Get PDF
    Hot-wire anemometry to analyze the structure and geometry of rotary wing trailing vortices is studied. Tests cover a range of aspect ratios and blade twist. For all configurations, measured vortex strength correlates well with maximum blade-bound circulation. Measurements of wake geometry are in agreement with classical data for high-aspect ratios. The detailed vortex structure is similar to that found for fixed wings and consists of four well defined regions--a viscous core, a turbulent mixing region, a merging region, and an inviscid outer region. A single set of empirical formulas for the entire set of test data is described

    The microcanonical ensemble of the ideal relativistic quantum gas with angular momentum conservation

    Get PDF
    We derive the microcanonical partition function of the ideal relativistic quantum gas with fixed intrinsic angular momentum as an expansion over fixed multiplicities. We developed a group theoretical approach by generalizing known projection techniques to the Poincare' group. Our calculation is carried out in a quantum field framework and applies to particles with any spin. It extends known results in literature in that it does not introduce any large volume approximation and it takes particle spin fully into account. We provide expressions of the microcanonical partition function at fixed multiplicities in the limiting classical case of large volumes and large angular momenta and in the grand-canonical ensemble. We also derive the microcanonical partition function of the ideal relativistic quantum gas with fixed parity.Comment: 38 pages; minor corrections to the formulae for the published versio
    corecore