620 research outputs found
Assessment of the radiological impact of a decommissioning nuclear power plant in Italy
The assessment of the radiological impact of a decommissioning Nuclear Power
Plant is presented here through the results of an environmental monitoring
survey carried out in the area surrounding the Garigliano Power Plant. The
levels of radioactivity in soil, water, air and other environmental matrices
are shown, in which {\alpha}, {\beta} and {\gamma} activity and {\gamma}
equivalent dose rate are measured. Radioactivity levels of the samples from the
Garigliano area are analyzed and then compared to those from a control zone
situated more than 100 km away. Moreover, a comparison is made with a previous
survey held in 2001. The analyses and comparisons show no significant
alteration in the radiological characteristics of the area surroundings the
plant, with an overall radioactivity depending mainly from the global fallout
and natural sources
Assessment of the radiological impact of a decommissioning nuclear power plant in Italy
The assessment of the radiological impact of a decommissioning Nuclear Power
Plant is presented here through the results of an environmental monitoring
survey carried out in the area surrounding the Garigliano Power Plant. The
levels of radioactivity in soil, water, air and other environmental matrices
are shown, in which {\alpha}, {\beta} and {\gamma} activity and {\gamma}
equivalent dose rate are measured. Radioactivity levels of the samples from the
Garigliano area are analyzed and then compared to those from a control zone
situated more than 100 km away. Moreover, a comparison is made with a previous
survey held in 2001. The analyses and comparisons show no significant
alteration in the radiological characteristics of the area surroundings the
plant, with an overall radioactivity depending mainly from the global fallout
and natural sources.Comment: 13 pages, 6 figures, 2 table
Study of 236U/238U ratio at CIRCE using a 16-strip silicon detector with a TOF system
Accelerator Mass Spectrometry (AMS) is presently the most sensitive technique for the measurement of long-lived actinides, e.g. 236 U and x Pu isotopes. A new actinide AMS system, based on a 3-MV pelletron tandem accelerator, is operated at the Center for Isotopic Research on Cultural and Environmental Heritage (CIRCE) in Caserta, Italy. In this paper we report on the procedure adopted to increase the 236 U abundance sensitivity as low as possible. The energy and position determinations of the 236 U ions, using a 16-strip silicon detector have been obtained. A 236 U/ 238 U isotopic ratio background level of about 2.9Ă10 â11 was obtained, summing over all the strips, using a Time of Flight-Energy (TOF-E) system with a 16-strip silicon detector (4.9Ă10 â12 just with one strip)
The Artemidorus Papyrus: Solving An Ancient Puzzle with Radiocarbon and Ion Beam Analysis Measurements
Ancient papyrus manuscripts are one of the most fascinating sources for reconstructing not only ancient life habits but also past literature. Recently, an amazing document has come to the fore due to the heated debates it raised: the so-called Artemidorus papyrus. It is a very long scroll (about 2.5 m) composed of several fragments of different sizes, with inscriptions and drawings on both sides. On the recto of the document, a text about geography and some drawings of heads, feet, and hands are present, while on the verso there are many sketches of animals, both real and fantastic. Its importance in classical studies comes from the fact that some scholars claim that it is the first known transcription of a relatively large fragment by the Greek geographer Artemidorus. However, other scholars think that the papyrus is a fake, drawn in the 19th century AD by a well-known forger. In order to overcome all possible ambiguities, the papyrus has been studied not only on the basis of historical and paleographic criteria but also by scientific techniques. We have contributed to the knowledge about the papyrus by radiocarbon dating the document and by analyzing the composition of the ink using ion beam analysis (IBA). Results are compatible with the scroll being an ancient manuscript: accelerator mass spectrometry (AMS) 14C measurements have dated the papyrus to a period between the 1st century BC and 1st century AD, while IBA measurements have pointed out the use of an organic (carbon-based) ink, which was typical of ancient Roman and Greek times. Details of the measurements are presented to emphasize the importance of combining AMS and IBA results
Ag X-ray ïŹuorescence on diïŹerent thickness and concentration layers
This work derives from the requirement to investigate on the silver surface enrichment of objects of historical and artistic interest using the X-ray ïŹuorescence non-destructive technique (XRF). The aim is the thickness estimation through the experimental relationship between Kα KÎČ and Kα Lα of Ag as a function of the thickness. Measurements on silver sheets of diïŹerent thicknesses and three concentrations are carried out using a XRF spectrometer with a maximum voltage of 50kV. The results allow to analyse the plating layer of silver objects also to make other interesting considerations
The role of the surfaces in the photon absorption in Ge nanoclusters embedded in silica
The usage of semiconductor nanostructures is highly promising for boosting the energy conversion efficiency in photovoltaics technology, but still some of the underlying mechanisms are not well understood at the nanoscale length. Ge quantum dots (QDs) should have a larger absorption and a more efficient quantum confinement effect than Si ones, thus they are good candidate for third-generation solar cells. In this work, Ge QDs embedded in silica matrix have been synthesized through magnetron sputtering deposition and annealing up to 800°C. The thermal evolution of the QD size (2 to 10 nm) has been followed by transmission electron microscopy and X-ray diffraction techniques, evidencing an Ostwald ripening mechanism with a concomitant amorphous-crystalline transition. The optical absorption of Ge nanoclusters has been measured by spectrophotometry analyses, evidencing an optical bandgap of 1.6 eV, unexpectedly independent of the QDs size or of the solid phase (amorphous or crystalline). A simple modeling, based on the Tauc law, shows that the photon absorption has a much larger extent in smaller Ge QDs, being related to the surface extent rather than to the volume. These data are presented and discussed also considering the outcomes for application of Ge nanostructures in photovoltaics
First Measurement of the He3+He3-->He4+2p Cross Section down to the Lower Edge of the Solar Gamow Peak
We give the LUNA results on the cross section measurement of a key reaction
of the proton-proton chain strongly affecting the calculated neutrino
luminosity from the Sun: He3+He3-->He4+2p. Due to the cosmic ray suppression
provided by the Gran Sasso underground laboratory it has been possible to
measure the cross section down to the lower edge of the solar Gamow peak, i.e.
as low as 16.5 keV centre of mass energy. The data clearly show the cross
section increase due to the electron screening effect but they do not exhibit
any evidence for a narrow resonance suggested to explain the observed solar
neutrino flux.Comment: 5 pages, RevTeX, and 2 figures in PostScript Submitted for
publicatio
Measurement of 1323 and 1487 keV resonances in 15N({\alpha}, {\gamma})19F with the recoil separator ERNA
The origin of fluorine is a widely debated issue. Nevertheless, the
^{15}N({\alpha},{\gamma})^{19}F reaction is a common feature among the various
production channels so far proposed. Its reaction rate at relevant temperatures
is determined by a number of narrow resonances together with the DC component
and the tails of the two broad resonances at E_{c.m.} = 1323 and 1487 keV.
Measurement through the direct detection of the 19F recoil ions with the
European Recoil separator for Nuclear Astrophysics (ERNA) were performed. The
reaction was initiated by a 15N beam impinging onto a 4He windowless gas
target. The observed yield of the resonances at Ec.m. = 1323 and 1487 keV is
used to determine their widths in the {\alpha} and {\gamma} channels. We show
that a direct measurement of the cross section of the
^{15}N({\alpha},{\gamma})^{19}F reaction can be successfully obtained with the
Recoil Separator ERNA, and the widths {\Gamma}_{\gamma} and {\Gamma}_{\alpha}
of the two broad resonances have been determined. While a fair agreement is
found with earlier determination of the widths of the 1487 keV resonance, a
significant difference is found for the 1323 keV resonance {\Gamma}_{\alpha} .
The revision of the widths of the two more relevant broad resonances in the
15N({\alpha},{\gamma})19F reaction presented in this work is the first step
toward a more firm determination of the reaction rate. At present, the residual
uncertainty at the temperatures of the ^{19}F stellar nucleosynthesis is
dominated by the uncertainties affecting the Direct Capture component and the
364 keV narrow resonance, both so far investigated only through indirect
experiments.Comment: 8 pages, 11 figures. Accepted for publication in PR
Comparison of the LUNA 3He(alpha,gamma)7Be activation results with earlier measurements and model calculations
Recently, the LUNA collaboration has carried out a high precision measurement
on the 3He(alpha,gamma)7Be reaction cross section with both activation and
on-line gamma-detection methods at unprecedented low energies. In this paper
the results obtained with the activation method are summarized. The results are
compared with previous activation experiments and the zero energy extrapolated
astrophysical S factor is determined using different theoretical models.Comment: Accepted for publication in Journal of Physics
Activation measurement of the 3He(alpha,gamma)7Be cross section at low energy
The nuclear physics input from the 3He(alpha,gamma)7Be cross section is a
major uncertainty in the fluxes of 7Be and 8B neutrinos from the Sun predicted
by solar models and in the 7Li abundance obtained in big-bang nucleosynthesis
calculations. The present work reports on a new precision experiment using the
activation technique at energies directly relevant to big-bang nucleosynthesis.
Previously such low energies had been reached experimentally only by the
prompt-gamma technique and with inferior precision. Using a windowless gas
target, high beam intensity and low background gamma-counting facilities, the
3He(alpha,gamma)7Be cross section has been determined at 127, 148 and 169 keV
center-of-mass energy with a total uncertainty of 4%. The sources of systematic
uncertainty are discussed in detail. The present data can be used in big-bang
nucleosynthesis calculations and to constrain the extrapolation of the
3He(alpha,gamma)7Be astrophysical S-factor to solar energies
- âŠ