183 research outputs found

    Isolation and characterization of galactinol synthases from hybrid poplar

    Get PDF
    The raffinose family of oligosaccharides (RFOs) serve as transport carbohydrates in the phloem, storage compounds in sink tissues, and putative biological agents to combat both abiotic and biotic stress in several plant species. To investigate further the functional roles of this class of compounds in trees, two cDNAs encoding galactinol synthase (GolS, EC 2.4.1.123), which catalyses the first step in the biosynthesis of RFOs, were identified and cloned from hybrid poplar (Populus alba×grandidentata). Phylogenetic analyses of the Populus GolS isoforms with other known GolS proteins suggested a putative role for these enzymes during biotic or abiotic stress in hybrid poplar. The predicted protein sequences of both isoforms (Pa×gGolSI and Pa×gGolSII) showed characteristics of GolS proteins from other species, including a serine phosphorylation site and the ASAAP pentapeptide hydrophobic domain. Kinetic analyses of recombinant Pa×gGolSI and Pa×gGolSII resulted in Km values for UPD-galactose of 0.80 and 0.65 mM and Vmax values of 657.5 and 1245 nM min−1, respectively. Pa×gGolSI inherently possessed a broader pH and temperature range when compared with Pa×gGolSII. Interestingly, spatial and temporal expression analyses revealed that Pa×gGolSII transcript levels varied seasonally, while Pa×gGolSI did not, implying temperature-regulated transcriptional control of this gene in addition to the observed thermosensitivity of the respective enzyme. This evidence suggested that Pa×gGolSI may be involved in basic metabolic activities such as storage, while Pa×gGolSII is probably involved in seasonal mobilization of carbohydrates

    Antibody Response After Third Vaccination With mRNA-1273 or BNT162b2: Extension of a Randomized Controlled SARS-CoV-2 Noninferiority Vaccine Trial in Patients With Different Levels of Immunosuppression (COVERALL-2).

    Get PDF
    Extension of the COVERALL (COrona VaccinE tRiAL pLatform) randomized trial showed noninferiority in antibody response of the third dose of Moderna mRNA-1273 vaccine (95.3% [95% confidence interval {CI}, 91.9%-98.7%]) compared to Pfizer-BioNTech BNT162b2 vaccine (98.1% [95% CI, 95.9%-100.0%]) in individuals with different levels of immunosuppression (difference, -2.8% [95% CI, -6.8% to 1.3%])

    Antibody Response After the Third SARS-CoV-2 Vaccine in Solid Organ Transplant Recipients and People Living With HIV (COVERALL-2).

    Get PDF
    BACKGROUND After basic immunization with 2 mRNA SARS-CoV-2 vaccine doses, only a small proportion of patients who are severely immunocompromised generate a sufficient antibody response. Hence, we assessed the additional benefit of a third SARS-CoV-2 vaccine in patients with different levels of immunosuppression. METHODS In this observational extension of the COVERALL trial (Corona Vaccine Trial Platform), we recruited patients from the Swiss HIV Cohort Study and the Swiss Transplant Cohort Study (ie, lung and kidney transplant recipients). We collected blood samples before and 8 weeks after the third SARS-CoV-2 vaccination with either mRNA-1273 (Moderna) or BNT162b2 (Pfizer-BioNTech). The primary outcome was the proportion of participants showing an antibody response (Elecsys Anti-SARS-CoV-2 S test; threshold ≥100 U/mL) 8 weeks after the third SARS-CoV-2 vaccination. We also compared the proportion of patients who reached the primary outcome from basic immunization (the first and second vaccines) to the third vaccination. RESULTS Nearly all participants (97.2% [95% CI, 95.9%-98.6%], 564/580) had an antibody response. This response was comparable between mRNA-1273 (96.1% [95% CI, 93.7%-98.6%], 245/255) and BNT162b2 (98.2% [95% CI, 96.7%-99.6%], 319/325). Stratification by cohort showed that 99.8% (502/503) of people living with HIV and 80.5% (62/77) of recipients of solid organ transplants achieved the primary endpoint. The proportion of patients with an antibody response in solid organ transplant recipients improved from the second vaccination (22.7%, 15/66) to the third (80.5%, 62/77). CONCLUSIONS People living with HIV had a high antibody response. The third vaccine increased the proportion of solid organ transplant recipients with an antibody response. Clinical Trials Registration. NCT04805125 (ClinicalTrials.gov)

    Antibody Response After Third Vaccination With mRNA-1273 or BNT162b2: Extension of a Randomized Controlled SARS-CoV-2 Noninferiority Vaccine Trial in Patients With Different Levels of Immunosuppression (COVERALL-2)

    Full text link
    Extension of the COVERALL (COrona VaccinE tRiAL pLatform) randomized trial showed noninferiority in antibody response of the third dose of Moderna mRNA-1273 vaccine (95.3% [95% confidence interval {CI}, 91.9%-98.7%]) compared to Pfizer-BioNTech BNT162b2 vaccine (98.1% [95% CI, 95.9%-100.0%]) in individuals with different levels of immunosuppression (difference, -2.8% [95% CI, -6.8% to 1.3%])

    Antibody Response After the Third SARS-CoV-2 Vaccine in Solid Organ Transplant Recipients and People Living With HIV (COVERALL-2)

    Get PDF
    BACKGROUND After basic immunization with 2 mRNA SARS-CoV-2 vaccine doses, only a small proportion of patients who are severely immunocompromised generate a sufficient antibody response. Hence, we assessed the additional benefit of a third SARS-CoV-2 vaccine in patients with different levels of immunosuppression. METHODS In this observational extension of the COVERALL trial (Corona Vaccine Trial Platform), we recruited patients from the Swiss HIV Cohort Study and the Swiss Transplant Cohort Study (ie, lung and kidney transplant recipients). We collected blood samples before and 8 weeks after the third SARS-CoV-2 vaccination with either mRNA-1273 (Moderna) or BNT162b2 (Pfizer-BioNTech). The primary outcome was the proportion of participants showing an antibody response (Elecsys Anti-SARS-CoV-2 S test; threshold ≥100 U/mL) 8 weeks after the third SARS-CoV-2 vaccination. We also compared the proportion of patients who reached the primary outcome from basic immunization (the first and second vaccines) to the third vaccination. RESULTS Nearly all participants (97.2% [95% CI, 95.9%-98.6%], 564/580) had an antibody response. This response was comparable between mRNA-1273 (96.1% [95% CI, 93.7%-98.6%], 245/255) and BNT162b2 (98.2% [95% CI, 96.7%-99.6%], 319/325). Stratification by cohort showed that 99.8% (502/503) of people living with HIV and 80.5% (62/77) of recipients of solid organ transplants achieved the primary endpoint. The proportion of patients with an antibody response in solid organ transplant recipients improved from the second vaccination (22.7%, 15/66) to the third (80.5%, 62/77). CONCLUSIONS People living with HIV had a high antibody response. The third vaccine increased the proportion of solid organ transplant recipients with an antibody response. Clinical Trials Registration. NCT04805125 (ClinicalTrials.gov)

    Detection and Verification of Mammalian Mirtrons by Northern Blotting

    Get PDF
    microRNAs (miRNAs) have vital roles in regulating gene expression—contributing to major diseases like cancer and heart disease. Over the last decade, thousands of miRNAs have been discovered through high throughput sequencing-based annotation. Different classes have been described, as well as a great dynamic range of expression levels. While sequencing approaches provide insight into biogenesis and allow confident identification, there is a need for additional methods for validation and characterization. Northern blotting was one of the first techniques used for studying miRNAs, and remains one of the most valuable as it avoids enzymatic manipulation of miRNA transcripts. Blotting can also provide insight into biogenesis by revealing RNA processing intermediates. Compared to sequencing, however, northern blotting is a relatively insensitive technology. This creates a challenge for detecting low expressed miRNAs, particularly those produced by inefficient, non-canonical pathways. In this chapter, we describe a strategy to study such miRNAs by northern blotting that involves ectopic expression of both miRNAs and miRNA-binding Argonaute (Ago) proteins. Through use of epitope tags, this strategy also provides a convenient method for verification of small RNA competency to be loaded into regulatory complexes

    Down-regulation of the myo-inositol oxygenase gene family has no effect on cell wall composition in Arabidopsis

    Get PDF
    The enzyme myo-inositol oxygenase (MIOX; E.C. 1.13.99.1) catalyzes the ring-opening four-electron oxidation of myo-inositol into glucuronic acid, which is subsequently activated to UDP-glucuronic acid (UDP-GlcA) and serves as a precursor for plant cell wall polysaccharides. Starting from single T-DNA insertion lines in different MIOX-genes a quadruple knockdown (miox1/2/4/5-mutant) was obtained by crossing, which exhibits greater than 90% down-regulation of all four functional MIOX genes. Miox1/2/4/5-mutant shows no visible phenotype and produces viable pollen. The alternative pathway to UDP-glucuronic acid via UDP-glucose is upregulated in the miox1/2/4/5-mutant as a compensatory mechanism. Miox1/2/4/5-mutant is impaired in the utilization of myo-inositol for seedling growth. The incorporation of myo-inositol derived sugars into cell walls is strongly (>90%) inhibited. Instead, myo-inositol and metabolites produced from myo-inositol such as galactinol accumulate in the miox1/2/4/5-mutant. The increase in galactinol and raffinose family oligosaccharides does not enhance stress tolerance. The ascorbic acid levels are the same in mutant and wild type plants

    A Central Role of Abscisic Acid in Stress-Regulated Carbohydrate Metabolism

    Get PDF
    Background: Abiotic stresses adversely affect plant growth and development. The hormone abscisic acid (ABA) plays a central role in the response and adaptation to environmental constraints. However, apart from the well established role of ABA in regulating gene expression programmes, little is known about its function in plant stress metabolism. Principal Findings: Using an integrative multiparallel approach of metabolome and transcriptome analyses, we studied the dynamic response of the model glyophyte Arabidopsis thaliana to ABA and high salt conditions. Our work shows that salt stress induces complex re-adjustment of carbohydrate metabolism and that ABA triggers the initial steps of carbon mobilisation. Significance: These findings open new perspectives on how high salinity and ABA impact on central carbohydrate metabolism and highlight the power of iterative combinatorial approaches of non-targeted and hypothesis-driven experiments in stress biology
    corecore