2,296 research outputs found

    PREDICTING THE RELATIONSHIP BETWEEN PERCEIVED INFLUENCE, BRAND ENGAGEMENT, BRAND EXPECTED VALUE AND INTENTION PURCHASE: AN EMPRICAL STUDY

    Get PDF
    The purpose of this study is to predict the relationship between  perceived influence, brand engagement, brand expected value, and intention to purchase. The data were gathered from online respondents. The research questionnaire was built from previous research and  the research variables were measured by 5-point Likert scales. Before analyzing data for testing hypotheses, reliability and validity tests are performed first. Hypothesis testing is conducted by using structural equation modeling.The results show that there are four out of six hypotheses that are supported. This paper provides research discussion, limitation, and recommendation for future researc

    Moments of generalized Husimi distributions and complexity of many-body quantum states

    Full text link
    We consider generalized Husimi distributions for many-body systems, and show that their moments are good measures of complexity of many-body quantum states. Our construction of the Husimi distribution is based on the coherent state of the single-particle transformation group. Then the coherent states are independent-particle states, and, at the same time, the most localized states in the Husimi representation. Therefore delocalization of the Husimi distribution, which can be measured by the moments, is a sign of many-body correlation (entanglement). Since the delocalization of the Husimi distribution is also related to chaoticity of the dynamics, it suggests a relation between entanglement and chaos. Our definition of the Husimi distribution can be applied not only to the systems of distinguishable particles, but also to those of identical particles, i.e., fermions and bosons. We derive an algebraic formula to evaluate the moments of the Husimi distribution.Comment: published version, 33 pages, 7 figre

    Correlations of observables in chaotic states of macroscopic quantum systems

    Full text link
    We study correlations of observables in energy eigenstates of chaotic systems of a large size NN. We show that the bipartite entanglement of two subsystems is quite strong, whereas macroscopic entanglement of the total system is absent. It is also found that correlations, either quantum or classical, among less than N/2N/2 points are quite small. These results imply that chaotic states are stable. Invariance of these properties under local operations is also shown.Comment: 5 pages, 2 figure

    Aproveitamento da borra de açaí para produção de biscoitos.

    Get PDF
    Este trabalho avaliou a farinha da borra de açaí na substituição parcial da farinha de trigo na formulação de biscoito

    Penerapan Model Pembelajaran Relating, Experiencing, Applying, Cooperating, Transferring (REACT) untuk Meningkatkan Pemahaman Konsep Fisika SMA

    Get PDF
    The aims of this study was to test the effectiveness of the Relating, Experiencing, Applying, Cooperating, Transferring (REACT) learning model in improving students' understanding of physics concepts. This research used Action Research with the research subjects of class X MIPA 4 SMA N 2 Batang. Data collection techniques using tests. The results of the research in cycle I showed the number of students who got a score of ≄ 60 was 4 students and cycle II was 14 students. These results indicate that the REACT learning model can improve students' understanding of physics concepts. The learning process that is carried out is always connected with events that occur in real life so that students understand the concept more deeply. The REACT learning model can be applied to other physics materials so that students are more actively involved in learning and improve students' understanding of physics concepts

    High power diode laser surface glazing of concrete

    Get PDF
    This present work describes the utilisation of the relatively novel high power diode laser (HPDL) to generate a surface glaze on the ordinary Portland cement (OPC) surface of concrete. The value of such an investigation would be to facilitate the hitherto impossible task of generating a durable and long-lasting surface seal on the concrete, thereby extending the life and applications base of the concrete. The basic process phenomena are investigated and the laser effects in terms of glaze morphology, composition and microstructure are presented. Also, the resultant heat affects are analysed and described, as well as the effects of the shield gases, O2 and Ar, during laser processing. HPDL glazing of OPC was successfully demonstrated with power densities as low as 750 W cm-2 and at scanning rates up to 480 mm min-1. The work showed that the generation of the surface glaze resulted in improved mechanical and chemical properties over the untreated OPC surface of concrete. Both untreated and HPDL glazed OPC were tested for pull-off strength, rupture strength, water absorption, wear resistance and corrosion resistance. The OPC laser glaze exhibited clear improvements in wear, water sorptivity, and resistance (up to 80% concentration) to nitric acid, sodium hydroxide and detergent. Life assessment testing revealed that the OPC laser glaze had an increase in actual wear life of 1.3 to 14.8 times over the untreated OPC surface of concrete, depending upon the corrosive environment

    Comparative monolayer investigations of surface properties of negatively charged glycosphingolipids from vertebrates (gangliosides) and invertebrates (SGL-II, lipid IV).

    Get PDF
    The surface properties of four negatively charged glycosphingolipids from vertebrates, the sialo-glycosphingolipids (=gangliosides) GM1, GD1a, GT1b and a sulfo-glycosphingolipid (=sulfatide), and of the two negatively charged glycosphingolipids from lower invertebrates, the glucurono-glycosphingolipid Lipid IV and the aminophosphono-glycosphingo-lipid SGL-II were investigated in monolayers at the air/water interface. The molecular peculiarities under investigation were surface pressure (π) and surface potential (ΔV) which are described for Lipid IV and SGL-II for the first time. The surface pressure/area isotherms of all glycosphingolipids were typical of a liquid-expanded monolayer and, with the exception of SGL-II, exhibited a phase transition to a liquid-condensed state at surface pressures above 20 mN/m. The surface potential/molecular area data found for gangliosides in the closely packed state at π=30 mN/m (GM1: ΔV = −17 mV; GD1a: ΔV = −35 mV; GT1b: ΔV = −39 mV) showed only a slight influence of the additional number of negatively charged residues. For Lipid IV, the surface behavior was very similar to GM1 both possessing one negative group per molecule, whereas in SGL-II also the surface potential data (ΔV = −173 mV) were different compared with GD1a both possessing two negative groups per molecule. The addition of Ca2+ condensed the monolayers of all glycolipids and increased the potential in the direction to more positive values, but these findings were less effective in SGL-II films. On the basis of monolayer results presented here, in biological membranes of invertebrates especially Lipid IV might play a similar role as the ganglioside GM1 in vertebrate cells

    Tests and applications of self-consistent cranking in the interacting boson model

    Get PDF
    The self-consistent cranking method is tested by comparing the cranking calculations in the interacting boson model with the exact results obtained from the SU(3) and O(6) dynamical symmetries and from numerical diagonalization. The method is used to study the spin dependence of shape variables in the sdsd and sdgsdg boson models. When realistic sets of parameters are used, both models lead to similar results: axial shape is retained with increasing cranking frequency while fluctuations in the shape variable Îł\gamma are slightly reduced.Comment: 9 pages, 3 ps figures, Revte
    • 

    corecore