466 research outputs found

    Majorana spinors and extended Lorentz symmetry in four-dimensional theory

    Full text link
    An extended local Lorentz symmetry in four-dimensional (4D) theory is considered. A source of this symmetry is a group of general linear transformations of four-component Majorana spinors GL(4,M) which is isomorphic to GL(4,R) and is the covering of an extended Lorentz group in a 6D Minkowski space M(3,3) including superluminal and scaling transformations. Physical space-time is assumed to be a 4D pseudo-Riemannian manifold. To connect the extended Lorentz symmetry in the M(3,3) space with the physical space-time, a fiber bundle over the 4D manifold is introduced with M(3,3) as a typical fiber. The action is constructed which is invariant with respect to both general 4D coordinate and local GL(4,M) spinor transformations. The components of the metric on the 6D fiber are expressed in terms of the 4D pseudo-Riemannian metric and two extra complex fields: 4D vector and scalar ones. These extra fields describe in the general case massive particles interacting with an extra U(1) gauge field and weakly interacting with ordinary particles, i.e. possessing properties of invisible (dark) matter.Comment: 24 page

    Synthesis and Characterization of Nanostructured Oxide Layers on Ti-Nb-Zr-Ta and Ti-Nb-Zr-Fe Biomedical Alloys

    Get PDF
    Nanoporous/nanotubular complex oxide layers were developed on high-fraction β phase quaternary Ti-Nb-Zr-Ta and Ti-Nb-Zr-Fe promising biomedical alloys with a low elasticity modulus. Surface modification was achieved by electrochemical anodization aimed at the synthesis of the morphology of the nanostructures, which exhibited inner diameters of 15–100 nm. SEM, EDS, XRD, and current evolution analyses were performed for the characterization of the oxide layers. By optimizing the process parameters of electrochemical anodization, complex oxide layers with pore/tube openings of 18–92 nm on Ti-10Nb-10Zr-5Ta, 19–89 nm on Ti-20Nb-20Zr-4Ta, and 17–72 nm on Ti-29.3Nb-13.6Zr-1.9Fe alloys were synthesized using 1 M H3PO4 + 0.5 wt% HF aqueous electrolytes and 0.5 wt% NH4F + 2 wt% H20 + ethylene glycol organic electrolytes

    Modelling state-dependent interference in common cranes

    Get PDF
    1. Interference is a key component of food competition, but is difficult to measure in natural animal populations. Using data from a long-term study, we show that interference between common cranes Grus grus L., feeding on patches of cereal seeds, reduces intake rates at high competitor densities, and that the strength of interference is unrelated to food abundance. 2. An alternative to measuring interference directly is to predict its strength using behaviour-based models. We test an interference model, originally developed for shorebirds feeding on invertebrate prey, for cranes. We compare the predictions of a rate-maximizing model, in which animals steal food if this increases intake rate, and a state-dependent model, in which they only rate-maximize if their intake rate is below a target value, otherwise they minimize injury risk by not stealing food. State-dependent aggression occurs in cranes. 3. The state-dependent model predicts more accurately the relative aggression rates of cranes of different dominance. However, both models predict accurately the observed strength of interference, that the strength of interference is unrelated to food abundance, at least within the observed range of crane and seed densities, and that cranes of a higher dominance have a higher intake rate than those of lower dominance. 4. This paper shows how state-dependent behaviour can be incorporated into an interference model, and that the model can produce accurate predictions for a system quite different to that for which it was developed.RAS was funded by the Natural Environment Research Council. LMB was partially funded by Ministerio de Ciencia y Tecnología (MCyT) and research grant PB97-1252 of MCyT. Field work was funded by DGICYT project PB87-0389 of the MCyT.Peer reviewe

    Evolución de los ácidos grasos en el mesocarpo del níspero (Mespilus germanica. L.) a diferentes estados de maduración

    Get PDF
    The fatty acid composition of medlar (Mespilus germanica L.) varied significantly among the ripening stages sampled at 157, 172 and 187 DAFs (days after full bloom). Twenty-one different fatty acids were detected in preclimacteric fruit and 17 when the climacteric began. Principal fatty acids, determined in medlar fruit harvested from October (157 and 172 DAFs) to November (187 DAF) were mainly palmitic acid (16:0), linoleic acid (18:2n-6), and a-linolenic acid (18:3n-3). While the content of saturated fatty acids [palmitic acid (16:0) and stearic acid (18:0)] increased, the content of the essential polyunsaturated fatty acids [linoleic acid (18:2n-6) and linolenic acid (18:3n-3)] decreased through ripening, in parallel with pulp darkening. The percentage of linoleic acid and a-linolenic acid in ripe, hard fruits was 60.0 and 13.5 % of dry wt at 157 DAF which decreased throughout ripening, remaining at 28.7 and 5.6 % of dry wt, respectively, in the fully softened and darkened pulp. A marked decreases in the double bond index, percentage of unsaturation and the ratio of unsaturation/saturation were also seen throughout the medlar ripening. The contribution of unsaturated fatty acid to the total fatty acid content decreased markedly as the medlar fruit became progressively softer and darkened.La composición en ácidos grasos del níspero (Mespilus germanica L.) varió significativamente entre los estados de maduración muestreados a los 157, 172 y 187 DAFs (días después de la floración). Veinte y un ácidos grasos diferentes fueron detectados en el fruto preclimatérico y 17 cuando comenzó el climaterio. Los ácidos grasos principales encontrados en nísperos, recolectados desde Octubre (157 y 172 DAFs) hasta Noviembre (187 DAF), fueron principalmente ácido palmítico (16:0), ácido linoléico (18:2n-6), y ácido a-linolénico (18:3n-3). En tanto que el contenido en ácidos grasos saturados (ácido palmítico (16:0) y ácido esteárico (18:0)) aumentó, el contenido en ácidos grasos esenciales (ácido linoleico (18:2n-6) y ácido linolénico (18:3n-6)) disminuyó durante la maduración, en paralelo con el oscurecimiento de la pulpa. El porcentaje de ácido linoleico y de ácido a-linolénico en frutos maduros sin reblandecer fue de 60.0 y 13.5 % del peso seco a 157 DAF, disminuyendo durante la maduración, y permaneciendo a 28.7 y 56 % del peso seco, respectivamente, en la pulpa completamente blanda y oscura. También se observó durante la maduración del níspero una marcada disminución en el número de dobles enlaces, en el tanto por ciento de instauración y en la relación instauración / saturación. La contribución de los ácidos grasos insaturados al contenido de ácidos grasos totales disminuyó marcadamente cuando el níspero comenzó progresivamente a reblandecerse y oscurecerse

    Non-Coding Keratin Variants Associate with Liver Fibrosis Progression in Patients with Hemochromatosis

    Get PDF
    Background: Keratins 8 and 18 (K8/K18) are intermediate filament proteins that protect the liver from various forms of injury. Exonic K8/K18 variants associate with adverse outcome in acute liver failure and with liver fibrosis progression in patients with chronic hepatitis C infection or primary biliary cirrhosis. Given the association of K8/K18 variants with endstage liver disease and progression in several chronic liver disorders, we studied the importance of keratin variants in patients with hemochromatosis. Methods: The entire K8/K18 exonic regions were analyzed in 162 hemochromatosis patients carrying homozygous C282Y HFE (hemochromatosis gene) mutations. 234 liver-healthy subjects were used as controls. Exonic regions were PCRamplified and analyzed using denaturing high-performance liquid chromatography and DNA sequencing. Previouslygenerated transgenic mice overexpressing K8 G62C were studied for their susceptibility to iron overload. Susceptibility to iron toxicity of primary hepatocytes that express K8 wild-type and G62C was also assessed. Results: We identified amino-acid-altering keratin heterozygous variants in 10 of 162 hemochromatosis patients (6.2%) and non-coding heterozygous variants in 6 additional patients (3.7%). Two novel K8 variants (Q169E/R275W) were found. K8 R341H was the most common amino-acid altering variant (4 patients), and exclusively associated with an intronic KRT8 IVS7+10delC deletion. Intronic, but not amino-acid-altering variants associated with the development of liver fibrosis. I

    Molecular dynamics simulations of elementary chemical processes in liquid water using combined density functional and molecular mechanics potentials. II. Charge separation processes

    Get PDF
    A new approach to carry out molecular dynamics simulations of chemical reactions in solution using combined density functional theory/molecular mechanics potentials is presented. We focus our attention on the analysis of reactive trajectories, dynamic solvent effects and transmission coefficient rather than on the evaluation of free energy which is another important topic that will be examined elsewhere. In a previous paper we have described the generalities of this hybrid molecular dynamics method and it has been employed to investigate low energy barrier proton transfer process in water. The study of processes with activation energies larger than a few kT requires the use of specific techniques adapted to “rare events” simulations. We describe here a method that consists in the simulation of short trajectories starting from an equilibrated transition state in solution, the structure of which has been approximately established. This calculation is particularly efficient when carried out with parallel computers since the study of a reactive process is decomposed in a set of short time trajectories that are completely independent. The procedure is close to that used by other authors in the context of classical molecular dynamics but present the advantage of describing the chemical system with rigorous quantum mechanical calculations. It is illustrated through the study of the first reaction step in electrophilic bromination of ethylene in water. This elementary process is representative of many charge separation reactions for which static and dynamic solvent effects play a fundamental [email protected]

    Fluorescence-activated multi-organelle mapping of subcellular plant hormone distribution

    Get PDF
    Auxins and cytokinins are two major families of phytohormones that control most aspects of plant growth, development and plasticity. Their distribution in plants has been described, but the importance of cell- and subcellular-type specific phytohormone homeostasis remains undefined. Herein, we revealed auxin and cytokinin distribution maps showing their different organelle-specific allocations within the Arabidopsis plant cell. To do so, we have developed Fluorescence-Activated multi-Organelle Sorting (FAmOS), an innovative subcellular fractionation technique based on flow cytometric principles. FAmOS allows the simultaneous sorting of four differently labelled organelles based on their individual light scatter and fluorescence parameters while ensuring hormone metabolic stability. Our data showed different subcellular distribution of auxin and cytokinins, revealing the formation of phytohormone gradients that have been suggested by the subcellular localization of auxin and cytokinin transporters, receptors and metabolic enzymes. Both hormones showed enrichment in vacuoles, while cytokinins were also accumulated in the endoplasmic reticulum

    Specialized Plant Metabolism Characteristics and Impact on Target Molecule Biotechnological Production.

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI linkPlant secondary metabolism evolved in the context of highly organized and differentiated cells and tissues, featuring massive chemical complexity operating under tight environmental, developmental and genetic control. Biotechnological demand for natural products has been continuously increasing because of their significant value and new applications, mainly as pharmaceuticals. Aseptic production systems of plant secondary metabolites have improved considerably, constituting an attractive tool for increased, stable and large-scale supply of valuable molecules. Surprisingly, to date, only a few examples including taxol, shikonin, berberine and artemisinin have emerged as success cases of commercial production using this strategy. The present review focuses on the main characteristics of plant specialized metabolism and their implications for current strategies used to produce secondary compounds in axenic cultivation systems. The search for consonance between plant secondary metabolism unique features and various in vitro culture systems, including cell, tissue, organ, and engineered cultures, as well as heterologous expression in microbial platforms, is discussed. Data to date strongly suggest that attaining full potential of these biotechnology production strategies requires being able to take advantage of plant specialized metabolism singularities for improved target molecule yields and for bypassing inherent difficulties in its rational manipulation
    corecore