3,068 research outputs found
Recommended from our members
Process Chain for Numerical Simulation of IMLS
Additive layer manufacturing methods imply, among other advantages, extensive flexibility
concerning their ability to realize mass customization. Despite various efforts towards process
enhancement, numerous deficiencies concerning part distortion or residual stresses are still
observable. The present work deals with the definition of an efficient process chain for
numerical simulation of indirect metal laser sintering (IMLS), in order to improve
dimensional accuracy. The underlying method is based on investigations of dilatometric behavior of iron based powder, which is integrated into reaction kinetic models and coupled
with a finite element analysis (FEA). Thus, singular process steps, e. g. solid phase sintering,
phase transformations or infiltration, are numerically modelled with adequate accuracy.
Referring to thermomechanical simulation, possibilities for pre-scaling of part geometries are
presented.Mechanical Engineerin
Letter from Dr. Thomas F. Strasser to Mary Farrell
Providence College Department of Theatre, Dance & Film
Letter from Dr. Thomas F. Strasser to Mary Farrell about the production of Lysistrata.https://digitalcommons.providence.edu/lysistrata_commentary/1000/thumbnail.jp
Insulin-Like Growth Factor (IGF)-I and -11 and IGFBinding Proteins-l, -2, and -3 in Children and Adolescents with Diabetes Mellitus: Correlation with Metabolic Control and Height Attainment.
The putative effects of diabetes and metabolic control on circulating levels of insulin-like growth factors (IGFs) and their binding proteins (IGFBPs) remain controversial. In the present study, serum levels of IGF-I and IGF-II and IGFBP-1, -2, and -3 were measured in 58 patients (age, 0.8-17 yr) with treated (51 subjects) or untreated (7 subjects) insulin-dependent diabetes mellitus (IDDM) and were compared with the levels in normal subjects. In the untreated patients IGF-I and IGF-II were decreased as compared with the healthy controls. In the treated diabetics IGF-I and IGF-II were reduced; IGFBP-2 (only in prepubertal subjects) and IGFBP-3 were increased. Furthermore, age-adjusted values of IGF-I, IGF-II, and IGFBP-3 were lower in prepubertal than in pubertal patients. Regression analysis revealed a negative correlation between hemoglobin (Hb)A1c and standard deviation scores (SDS) of IGF-I and a positive association between HbA1c and IGFBP-1 SDS or IGFBP-2 SDS. In the treated patients HbA1c was positively related to IGFBP-1 SDS and IGFBP-2 SDS when applying simple regression analysis and to IGFBP-2 SDS when using a multiple regression model. Strong correlations were observed between height SDS and IGF-I SDS, IGF-II SDS, and IGFBP-3 SDS in prepubertal subjects who had had IDDM for at least 2 yr, but not in adolescents. Such correlations have also been found in healthy children and adolescents. In conclusion; 1) IDDM is associated with alterations of the IGF-IGFBP system, which are partially accounted for by differences in metabolic control and pubertal status; 2) the lower plasma concentrations of serum IGF-I may play a role in the pathogenesis of growth impairment of poorly controlled prepubertal, but not pubertal, children and adolescents with IDDM; and 3) in addition, a potential role of the altered IGF-IGFBP system for the development of diabetic late complications is hypothesized
Valence band photoemission from the GaN(0001) surface
A detailed investigation by one-step photoemission calculations of the
GaN(0001)-(1x1) surface in comparison with recent experiments is presented in
order to clarify its structural properties and electronic structure. The
discussion of normal and off-normal spectra reveals through the identified
surface states clear fingerprints for the applicability of a surface model
proposed by Smith et al. Especially the predicted metallic bonds are confirmed.
In the context of direct transitions the calculated spectra allow to determine
the valence band width and to argue in favor of one of two theoretical bulk
band structures. Furthermore a commonly used experimental method to fix the
valence band maximum is critically tested.Comment: 8 pages, 11 eps files, submitted to PR
Bound-to-bound and bound-to-continuum optical transitions in combined quantum dot - superlattice systems
By combining band gap engineering with the self-organized growth of quantum
dots, we present a scheme of adjusting the mid-infrared absorption properties
to desired energy transitions in quantum dot based photodetectors. Embedding
the self organized InAs quantum dots into an AlAs/GaAs superlattice enables us
to tune the optical transition energy by changing the superlattice period as
well as by changing the growth conditions of the dots. Using a one band
envelope function framework we are able, in a fully three dimensional
calculation, to predict the photocurrent spectra of these devices as well as
their polarization properties. The calculations further predict a strong impact
of the dots on the superlattices minibands. The impact of vertical dot
alignment or misalignment on the absorption properties of this dot/superlattice
structure is investigated. The observed photocurrent spectra of vertically
coupled quantum dot stacks show very good agreement with the calculations.In
these experiments, vertically coupled quantum dot stacks show the best
performance in the desired photodetector application.Comment: 8 pages, 10 figures, submitted to PR
The impact of metallic contacts on propagation losses of an underlying photonic crystal waveguide
In view of an electrically pumped photonic crystal-based semiconductor optical amplifier (SOA), we investigate optical mode propagation in 2D PhC waveguides in the presence of metal contacts for carrier injection. Our photonic crystal (PhC) devices are manufactured in the InP/InGaAsP material system. For the loss measurements, we have fabricated contact strips as narrow as 300nm with a sub-50nm placing accuracy on top of W3 waveguides. We study the influence of their position and width on optical power transmission through passive waveguides with respect to viability for future active devices. Our experimental results are complemented by numerical studies (FDTD, plane-wave expansion method)
Шляхи підвищення ефективності фінансово-господарської діяльності підприємства
Мета даної статті полягає в необхідності виробити заходи з підвищення ефективності фінансово-господарської діяльності підприємства (на прикладі Кримського республіканського підприємства «Виробниче підприємство водопровідно-каналізаційної галузі» м. Сімферополя)
Oscillatory instabilities during formic acid oxidation on Pt(100), Pt(110) and Pt(111) under potentiostatic control. I. Experimental
The experimental characterization of the current/outer potential (I/U) behavior during the electrochemical CO oxidation on Pt(100), Pt(110) and Pt(111) is used as the first step towards a thorough investigation of the processes occurring during the electrochemical formic acid oxidation. The CO study is followed by new cyclovoltammetric results during the electrochemical formic acid oxidation on the corresponding Pt single crystals. At high concentrations of formic acid, the cyclovoltammograms revealed a splitting of the large current peak observed on the cathodic sweep into two peaks whose dependence on scan rate and reverse potential was investigated. It turned out that the presence of a sufficiently large ohmic resistance R was crucial for oscillatory instabilities. Given an appropriate resistance, all three Pt surfaces were found to exhibit current oscillations at both low and high formic acid concentrations. On Pt(100) stable mixed-mode oscillations were observed. In addition, the sensitivity of the oscillations to stirring was investigated. Whereas the period-1 oscillations were found to be independent of stirring, the mixed-mode oscillations transformed into simple oscillations with stirring. The mechanism giving rise to instability and oscillations is described
- …