95 research outputs found

    Proinflammatory Cytokines Activate the Intrinsic Apoptotic Pathway in β-Cells

    Get PDF
    OBJECTIVE:Proinflammatory cytokines are cytotoxic to beta-cells and have been implicated in the pathogenesis of type 1 diabetes and islet graft failure. The importance of the intrinsic mitochondrial apoptotic pathway in cytokine-induced beta-cell death is unclear. Here, cytokine activation of the intrinsic apoptotic pathway and the role of the two proapoptotic Bcl-2 proteins, Bad and Bax, were examined in beta-cells.RESEARCH DESIGN AND METHODS:Human and rat islets and INS-1 cells were exposed to a combination of proinflammatory cytokines (interleukin-1beta, interferon-gamma, and/or tumor necrosis factor-alpha). Activation of Bad was determined by Ser136 dephosphorylation, mitochondrial stress by changes in mitochondrial metabolic activity and cytochrome c release, downstream apoptotic signaling by activation of caspase-9 and -3, and DNA fragmentation. The inhibitors FK506 and V5 were used to investigate the role of Bad and Bax activation, respectively. [...

    Extracellular High-Mobility Group Box 1 Acts as an Innate Immune Mediator to Enhance Autoimmune Progression and Diabetes Onset in NOD Mice

    Get PDF
    OBJECTIVE—The implication of innate immunity in type 1 diabetes development has long been proposed. High-mobility group box 1 (HMGB1), an evolutionarily conserved chromosomal protein, was recently recognized to be a potent innate inflammatory mediator when released extracellularly. We sought to test the hypothesis that HMGB1 acts as an innate immune mediator implicated in type 1 diabetes pathogenesis

    Accelerated apoptotic death and <i>in vivo</i> turnover of erythrocytes in mice lacking functional mitogen- and stress-activated kinase MSK1/2

    Get PDF
    The mitogen- and stress-activated kinase MSK1/2 plays a decisive role in apoptosis. In analogy to apoptosis of nucleated cells, suicidal erythrocyte death called eryptosis is characterized by cell shrinkage and cell membrane scrambling leading to phosphatidylserine (PS) externalization. Here, we explored whether MSK1/2 participates in the regulation of eryptosis. To this end, erythrocytes were isolated from mice lacking functional MSK1/2 (msk−/−) and corresponding wild-type mice (msk+/+). Blood count, hematocrit, hemoglobin concentration and mean erythrocyte volume were similar in both msk−/− and msk+/+ mice, but reticulocyte count was significantly increased in msk−/− mice. Cell membrane PS exposure was similar in untreated msk−/− and msk+/+ erythrocytes, but was enhanced by pathophysiological cell stressors ex vivo such as hyperosmotic shock or energy depletion to significantly higher levels in msk−/− erythrocytes than in msk+/+ erythrocytes. Cell shrinkage following hyperosmotic shock and energy depletion, as well as hemolysis following decrease of extracellular osmolarity was more pronounced in msk−/− erythrocytes. The in vivo clearance of autologously-infused CFSE-labeled erythrocytes from circulating blood was faster in msk−/− mice. The spleens from msk−/− mice contained a significantly greater number of PS-exposing erythrocytes than spleens from msk+/+ mice. The present observations point to accelerated eryptosis and subsequent clearance of erythrocytes leading to enhanced erythrocyte turnover in MSK1/2-deficient mice

    Perinatal asphyxia: current status and approaches towards neuroprotective strategies, with focus on sentinel proteins

    Get PDF
    Delivery is a stressful and risky event menacing the newborn. The mother-dependent respiration has to be replaced by autonomous pulmonary breathing immediately after delivery. If delayed, it may lead to deficient oxygen supply compromising survival and development of the central nervous system. Lack of oxygen availability gives rise to depletion of NAD+ tissue stores, decrease of ATP formation, weakening of the electron transport pump and anaerobic metabolism and acidosis, leading necessarily to death if oxygenation is not promptly re-established. Re-oxygenation triggers a cascade of compensatory biochemical events to restore function, which may be accompanied by improper homeostasis and oxidative stress. Consequences may be incomplete recovery, or excess reactions that worsen the biological outcome by disturbed metabolism and/or imbalance produced by over-expression of alternative metabolic pathways. Perinatal asphyxia has been associated with severe neurological and psychiatric sequelae with delayed clinical onset. No specific treatments have yet been established. In the clinical setting, after resuscitation of an infant with birth asphyxia, the emphasis is on supportive therapy. Several interventions have been proposed to attenuate secondary neuronal injuries elicited by asphyxia, including hypothermia. Although promising, the clinical efficacy of hypothermia has not been fully demonstrated. It is evident that new approaches are warranted. The purpose of this review is to discuss the concept of sentinel proteins as targets for neuroprotection. Several sentinel proteins have been described to protect the integrity of the genome (e.g. PARP-1; XRCC1; DNA ligase IIIα; DNA polymerase β, ERCC2, DNA-dependent protein kinases). They act by eliciting metabolic cascades leading to (i) activation of cell survival and neurotrophic pathways; (ii) early and delayed programmed cell death, and (iii) promotion of cell proliferation, differentiation, neuritogenesis and synaptogenesis. It is proposed that sentinel proteins can be used as markers for characterising long-term effects of perinatal asphyxia, and as targets for novel therapeutic development and innovative strategies for neonatal care

    Perinatal mortality following assisted reproductive technology treatment in Australia and New Zealand, a public health approach for international reporting of perinatal mortality

    Get PDF
    BACKGROUND There is a need to have uniformed reporting of perinatal mortality for births following assisted reproductive technology (ART) treatment to enable international comparison and benchmarking of ART practice. METHODS The Australian and New Zealand Assisted Reproduction Database was used in this study. Births of ≥ 20 weeks gestation and/or ≥ 400 grams of birth weight following embryos transfer cycles in Australia and New Zealand during the period 2004 to 2008 were included. Differences in the mortality rates by different perinatal periods from a gestational age cutoff of ≥ 20, ≥ 22, ≥ 24, or ≥ 28 weeks (wks) to a neonatal period cutoff of either < 7 or < 28 days after birth were assessed. Crude and specific (number of embryos transferred and plurality) rates of perinatal mortality were calculated for selected gestational and neonatal periods. RESULTS When the perinatal period is defined as ≥ 20 wks gestation to < 28 days after birth, the perinatal mortality rate (PMR) was 16.1 per 1000 births (n = 630). A progressive contraction of the gestational age groups resulted in marked reductions in the PMR for deaths at < 28 days (22 wks 11.0; 24 wks 7.7; 28 wks 5.6); and similarly for deaths at < 7 days (20 wks 15.6, 22 wks 10.5; 24 wks 7.3; 28 wks 5.3). In contrast, a contraction of the perinatal period from < 28 to < 7 days after birth only marginally reduced the PMR from 16.2 to 15.6 per 1000 births which was consistent across all gestational ages. The PMR for single embryo transfer (SET) births (≥ 20 weeks gestation to < 7 days post-birth) was significantly lower (12.8 per 1000 SET births) compared to double embryo transfer (DET) births (PMR 18.3 per 1000 DET births; p < 0.001, Fisher’s Exact Test). Similarly, the PMR for SET births (≥ 22 weeks gestation to < 7 days post-birth) was significantly lower (8.8 per 1000 SET births, p < 0.001, Fisher’s Exact Test) when compared to DET births (12.2 per 1000 DET births). The highest PMR (50.5 per 1000 SET births, 95% CI 36.5-64.5) was for twins following SET births (≥ 20 weeks gestation to < 7 days post-birth) compared to twins following DET (23.9 per 1000 DET births, 95% CI 20.8-27.1). CONCLUSION Reporting of perinatal mortality of ART births is an essential component of quality ART practice. This should include measures that monitor the impact on perinatal mortality of multiple embryo transfer. We recommend that reporting of perinatal deaths following ART treatment, should be stratified for three gestation-specific perinatal periods of ≥ 20, ≥ 22 and ≥ 28 completed weeks to < 7 days post-birth; and include plurality specific rates by SET and DET. This would provide a valuable international evidence-base of PMR for use in evaluating ART policy, practice and new research.Elizabeth A Sullivan, Yueping A Wang, Robert J Norman, Georgina M Chambers, Abrar Ahmad Chughtai and Cynthia M Farquha

    Oxidized LDL upregulates angiotensin II type 1 receptor expression in cultured human coronary artery endothelial cells: The potential role of transcription factor NF-╬║B

    No full text
    Background - We demonstrated earlier that angiotensin II (Ang II), by AT1 receptor activation, upregulates oxidized LDL (ox-LDL) endothelial receptor LOX-1 gene expression and uptake of ox-LDL in human coronary artery endothelial cells (HCAECs). In this study, we investigated the regulation of Ang II receptors (AT1R and AT2R) by ox-LDL and the role of the redox-sensitive transcription factor NF-╬║B in this process. Methods and Results - HCAECs were incubated with ox-LDL for 24 hours. Ox-LDL (10 to 40 ╬╝g protein/mL) upregulated AT1R but not AT2R, mRNA, or protein. Ox-LDL degraded I╬║B╬▒ in cytoplasm and activated transcription factor NF-╬║B (P65) in HCAEC nuclear extract. Treatment of cells with the antioxidant ╬▒-tocopherol (10 to 50 ╬╝mol/L) attenuated ox-LDL-mediated degradation of I╬║B╬▒ and activation of NF-╬║B (P65) and inhibited the upregulation of AT1R mRNA and protein. The role of NF-╬║B signal transduction was further examined by use of an NF-╬║B inhibitor, caffeic acid phenethyl ester (CAPE). Pretreatment of cells with CAPE inhibited ox-LDL-mediated degradation of I╬║B╬▒ and NF-╬║B activation and inhibited ox-LDL-induced upregulation of AT1R expression. Incubation of cells with both ox-LDL and Ang II increased cell injury, measured as cell viability and LDH release, compared with either ox-LDL or Ang II alone. ╬▒-Tocopherol as well as the specific AT1R blocker CV11974 (candesartan) attenuated the cell-injurious effects of ox-LDL. Conclusions - These observations suggest an important role of ox-LDL-mediated AT1R upregulation in cell injury. In this process, NF-╬║B activation seems to play a critical role in signal transduction. These findings provide a basis for the use of antioxidants and AT1R blockers in designing therapy of atherosclerosis

    Oxidized LDL upregulates angiotensin II type 1 receptor expression in cultured human coronary artery endothelial cells: The potential role of transcription factor NF-╬║B

    No full text
    Background - We demonstrated earlier that angiotensin II (Ang II), by AT1 receptor activation, upregulates oxidized LDL (ox-LDL) endothelial receptor LOX-1 gene expression and uptake of ox-LDL in human coronary artery endothelial cells (HCAECs). In this study, we investigated the regulation of Ang II receptors (AT1R and AT2R) by ox-LDL and the role of the redox-sensitive transcription factor NF-╬║B in this process. Methods and Results - HCAECs were incubated with ox-LDL for 24 hours. Ox-LDL (10 to 40 ╬╝g protein/mL) upregulated AT1R but not AT2R, mRNA, or protein. Ox-LDL degraded I╬║B╬▒ in cytoplasm and activated transcription factor NF-╬║B (P65) in HCAEC nuclear extract. Treatment of cells with the antioxidant ╬▒-tocopherol (10 to 50 ╬╝mol/L) attenuated ox-LDL-mediated degradation of I╬║B╬▒ and activation of NF-╬║B (P65) and inhibited the upregulation of AT1R mRNA and protein. The role of NF-╬║B signal transduction was further examined by use of an NF-╬║B inhibitor, caffeic acid phenethyl ester (CAPE). Pretreatment of cells with CAPE inhibited ox-LDL-mediated degradation of I╬║B╬▒ and NF-╬║B activation and inhibited ox-LDL-induced upregulation of AT1R expression. Incubation of cells with both ox-LDL and Ang II increased cell injury, measured as cell viability and LDH release, compared with either ox-LDL or Ang II alone. ╬▒-Tocopherol as well as the specific AT1R blocker CV11974 (candesartan) attenuated the cell-injurious effects of ox-LDL. Conclusions - These observations suggest an important role of ox-LDL-mediated AT1R upregulation in cell injury. In this process, NF-╬║B activation seems to play a critical role in signal transduction. These findings provide a basis for the use of antioxidants and AT1R blockers in designing therapy of atherosclerosis

    Statins modulate oxidized low-density lipoprotein-mediated adhesion molecule expression in human coronary artery endothelial cells: role of LOX-1

    No full text
    LOX-1, a receptor for oxidized low-density lipoprotein (ox-LDL), plays a critical role in endothelial dysfunction and atherosclerosis. LOX-1 activation also plays an important role in monocyte adhesion to endothelial cells. A number of studies show that 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) reduce total LDL cholesterol and exert a cardioprotective effect. We examined the modulation of LOX-1 expression and its function by two different statins, simvastatin and atorvastatin, in human coronary artery endothelial cells (HCAECs). We observed that ox-LDL (40 mug/ml) treatment upregulated the expression of E- and P-selectins, VCAM-1 and ICAM-1 in HCAECs. Ox-LDL mediated these effects via LOX-1, since antisense to LOX-1 mRNA decreased LOX-1 expression and subsequent adhesion molecule expression. Pretreatment of HCAECs with simvastatin or atorvastatin (1 and 10 muM) reduced ox-LDL-induced expression of LOX-1 as well as adhesion molecules (all P < 0.05). A high concentration of statins (10 μM) was more potent than the low concentration (1 μM) (P < 0.05). Both statins reduced ox-LDL-mediated activation of the redox-sensitive nuclear factor-kappaB (NF-kappaB) but not AP-1. These observations indicate that LOX-1 activation plays an important role in ox-LDL-induced expression of adhesion molecules. Inhibition of expression of LOX-1 and adhesion molecules and activation of NF-kappaB may be another mechanism of beneficial effects of statins in vascular diseases
    corecore