454 research outputs found
Weakly nonlinear modelling of a forced turbulent axisymmetric wake
A theory is presented where the weakly nonlinear analysis of laminar globally unstable flows in the presence of external forcing is extended to the turbulent regime. The analysis is demonstrated and validated using experimental results of an axisymmetric bluff-body wake at high Reynolds numbers, Re_D ∼1.88×10^5, where forcing is applied using a zero-net-mass-flux actuator located at the base of the blunt body. In this study we focus on the response of antisymmetric coherent structures with azimuthal wavenumbers m = ±1at a frequency St_D = 0.2 S, responsible for global vortex shedding. We found experimentally that axisymmetric forcing (m = 0) couples nonlinearly with the global shedding mode when the flow is forced at twice the shedding frequency, resulting in parametric subharmonic resonance through a triadic interaction between forcing and shedding. We derive simple weakly nonlinear models from the phase-averaged Navier–Stokes equations and show that they capture accurately the observed behaviour for this type of forcing. The unknown model coefficients are obtained experimentally by producing harmonic transients. This approach should be applicable in a variety of turbulent flows to describe the response of global modes to forcing
Entanglement verification for quantum key distribution systems with an underlying bipartite qubit-mode structure
We consider entanglement detection for quantum key distribution systems that
use two signal states and continuous variable measurements. This problem can be
formulated as a separability problem in a qubit-mode system. To verify
entanglement, we introduce an object that combines the covariance matrix of the
mode with the density matrix of the qubit. We derive necessary separability
criteria for this scenario. These criteria can be readily evaluated using
semidefinite programming and we apply them to the specific quantum key
distribution protocol.Comment: 6 pages, 2 figures, v2: final versio
Full quantum reconstruction of vortex states
We propose a complete tomographic reconstruction of any vortex state carrying
orbital angular momentum. The scheme determines the angular probability
distribution of the state at different times under free evolution. To represent
the quantum state we introduce a bona fide Wigner function defined on the
discrete cylinder, which is the natural phase space for the pair angle-angular
momentum. The feasibility of the proposal is addressed.Comment: Final published versio
Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers
Continuous-variable quantum key distribution protocols, based on Gaussian
modulation of the quadratures of coherent states, have been implemented in
recent experiments. A present limitation of such systems is the finite
efficiency of the detectors, which can in principle be compensated for by the
use of classical optical preamplifiers. Here we study this possibility in
detail, by deriving the modified secret key generation rates when an optical
parametric amplifier is placed at the output of the quantum channel. After
presenting a general set of security proofs, we show that the use of
preamplifiers does compensate for all the imperfections of the detectors when
the amplifier is optimal in terms of gain and noise. Imperfect amplifiers can
also enhance the system performance, under conditions which are generally
satisfied in practice.Comment: 11 pages, 7 figures, submitted to J. Phys. B (special issue on Few
Atoms Optics
Wigner function for twisted photons
A comprehensive theory of the Weyl-Wigner formalism for the canonical pair
angle-angular momentum is presented, with special emphasis in the implications
of rotational periodicity and angular-momentum discreteness.Comment: 6 pages, 4 figure
The role of brand loyalty and social media in e-commerce interfaces: survey results and implications for user interfaces
This paper explores the role of brand loyalty and social media in e-commerce interfaces. A survey consisting of 118 respondents was contacted to address the questions relating to online shopping and brand loyalty. Link between the frequency of access and time spent on an e-commerce user interface, and brand loyalty, gender and age profile differences, and the role of social media to branding and on-line shopping was analyzed. It was found that online loyalty differs from offline loyalty and loyalty also differed across genders, showing men were more loyal than women when shopping online. Information shared about products on social media by friends and family played an important role in purchase decision making. Website interface and ease of navigation were also key aspects for online shopping. The research concluded with recommendations to create multimodal websites which are more interactive and targeted so customer experience is enhanced and loyalty is achieved through the use of interactivity and social media
Three-dimensional reconstruction of coronary arteries and plaque morphology using CT angiography - comparison and registration with IVUS
BACKGROUND: The aim of this study is to present a new methodology for three-dimensional (3D) reconstruction of coronary arteries and plaque morphology using Computed Tomography Angiography (CTA). METHODS: The methodology is summarized in six stages: 1) pre-processing of the initial raw images, 2) rough estimation of the lumen and outer vessel wall borders and approximation of the vessel’s centerline, 3) manual adaptation of plaque parameters, 4) accurate extraction of the luminal centerline, 5) detection of the lumen - outer vessel wall borders and calcium plaque region, and 6) finally 3D surface construction. RESULTS: The methodology was compared to the estimations of a recently presented Intravascular Ultrasound (IVUS) plaque characterization method. The correlation coefficients for calcium volume, surface area, length and angle vessel were 0.79, 0.86, 0.95 and 0.88, respectively. Additionally, when comparing the inner and outer vessel wall volumes of the reconstructed arteries produced by IVUS and CTA the observed correlation was 0.87 and 0.83, respectively. CONCLUSIONS: The results indicated that the proposed methodology is fast and accurate and thus it is likely in the future to have applications in research and clinical arena
Recommended from our members
Mining balance disorders' data for the development of diagnostic decision support systems
In this work we present the methodology for the development of the EMBalance diagnostic Decision Support System (DSS) for balance disorders. Medical data from patients with balance disorders have been analysed using data mining techniques for the development of the diagnostic DSS. The proposed methodology uses various data, ranging from demographic characteristics to clinical examination, auditory and vestibular tests, in order to provide an accurate diagnosis. The system aims to provide decision support for general practitioners (GPs) and experts in the diagnosis of balance disorders as well as to provide recommendations for the appropriate information and data to be requested at each step of the diagnostic process. Detailed results are provided for the diagnosis of 12 balance disorders, both for GPs and experts. Overall, the reported accuracy ranges from 59.3 to 89.8% for GPs and from 74.3 to 92.1% for experts
- …