599 research outputs found

    Thermodynamics of Lithium Intercalation into Graphites and Disordered Carbons

    Get PDF
    The temperature dependence of the open-circuit potential of lithium half-cells was measured for electrodes of carbon materials having different amounts of structural disorder. The entropy of lithium intercalation, DeltaS, and enthalpy of intercalation, DeltaH, were determined over a broad range of lithium concentrations. For the disordered carbons, DeltaS is small. For graphite, an initially large DeltaS decreases with lithium concentration, becomes negative, and then shows two plateaus associated with the formation of intercalation compounds. For all carbons DeltaH is negative, and decreases in magnitude with increased lithium concentration. For lithium concentrations less than x = 0.5 in LixC6, for the disordered carbons the magnitude of DeltaH is significantly more negative than for graphite (i.e., intercalation is more exothermic). The measurements of DeltaH provide an energy spectrum of chemical environments for lithium. This spectrum can be used to understand some of the concentration dependence of configurational entropy, but the negative values of DeltaS require another contribution to entropy, perhaps vibrational in origin

    Deficiency of `Thin' Stellar Bars in Seyfert Host Galaxies

    Get PDF
    Using all available major samples of Seyfert galaxies and their corresponding control samples of closely matched non-active galaxies, we find that the bar ellipticities (or axial ratios) in Seyfert galaxies are systematically different from those in non-active galaxies. Overall, there is a deficiency of bars with large ellipticities (i.e., `fat' or `weak' bars) in Seyferts, compared to non-active galaxies. Accompanied with a large dispersion due to small number statistics, this effect is strictly speaking at the `2sigma' level. To obtain this result, the active galaxy samples of near-infrared surface photometry were matched to those of normal galaxies in type, host galaxy ellipticity, absolute magnitude, and, to some extent, in redshift. We discuss possible theoretical explanations of this phenomenon within the framework of galactic evolution, and, in particular, of radial gas redistribution in barred galaxies. Our conclusions provide further evidence that Seyfert hosts differ systematically from their non-active counterparts on scales of a few kpc.Comment: Astrophysical Journal Letters, in press. Latex, 2 postscript figure

    Velocity Fields of Spiral Galaxies in z~0.5 Clusters

    Get PDF
    Spiral galaxies can be affected by interactions in clusters, that also may distort the internal velocity field. If unrecognized from single-slit spectroscopy, this could lead to a wrong determination of the maximum rotation velocity as pointed out by Ziegler et al. (2003). This parameter directly enters into the Tully-Fisher relation, an important tool to investigate the evolution of spiral galaxies. To overcome this problem, we measure the 2D-velocity fields by observing three different slit positions per galaxy using FORS2 at the VLT providing us with full coverage of each galaxy and an adequate spatial resolution. The kinematic properties are compared to structural features determined on the HST/ACS images to assess possible interaction processes. As a next step, the whole analysis will be performed for three more clusters, so that we will be able to establish a high-accuracy TFR for spirals at z~0.5.Comment: 2 pages, 2 figures, going to be published in the proceedings of the IAU Symp. 241, "Stellar Populations as Building Blocks of Galaxies

    The Multi-Wavelength Tully-Fisher relation with spatially resolved HI kinematics

    Get PDF
    In this paper we investigate the statistical properties of the Tully-Fisher relation for a sample of 32 galaxies with measured distances from the Cepheid period-luminosity relation and/or TRGB stars. We take advantage of panchromatic photometry in 12 bands (from FUV to 4.5 μ\mum) and of spatially resolved HI kinematics. We use these data together with three kinematic measures (W50iW^{i}_{50}, VmaxV_{max} and VflatV_{flat}) extracted from the global HI profiles or HI rotation curves, so as to construct 36 correlations allowing us to select the one with the least scatter. We introduce a tightness parameter σ\sigma_{\perp} of the TFr, in order to obtain a slope-independent measure of the goodness of fit. We find that the tightest correlation occurs when we select the 3.6 μ\mum photometric band together with the VflatV_{flat} parameter extracted from the HI rotation curve.Comment: 16 pages, 16 figures, accepted for publication in MNRAS, minor changes due to proof correction

    A subarcsecond resolution near-infrared study of Seyfert and `normal' galaxies: II. Morphology

    Get PDF
    We present a detailed study of the bar fraction in the CfA sample of Seyfert galaxies, and in a carefully selected control sample of non-active galaxies, to investigate the relation between the presence of bars and of nuclear activity. To avoid the problems related to bar classification in the RC3, e.g., subjectivity, low resolution and contamination by dust, we have developed an objective bar classification method, which we conservatively apply to our new sub-arcsecond resolution near-infrared imaging data set (Peletier et al. 1999). We are able to use stringent criteria based on radial profiles of ellipticity and major axis position angle to determine the presence of a bar and its axial ratio. Concentrating on non-interacting galaxies in our sample for which morphological information can be obtained, we find that Seyfert hosts are barred more often (79% +/- 7.5%) than the non-active galaxies in our control sample (59% +/- 9%), a result which is at the 2.5 sigma significance level. The fraction of non-axisymmetric hosts becomes even larger when interacting galaxies are taken into account. We discuss the implications of this result for the fueling of central activity by large-scale bars. This paper improves on previous work by means of imaging at higher spatial resolution and by the use of a set of stringent criteria for bar presence, and confirms that the use of NIR is superior to optical imaging for detection of bars in disk galaxies.Comment: Latex, 3 figures, includes aaspptwo.sty, accepted for publication in the Astrophysical Journa

    Star formation associated with neutral hydrogen in the outskirts of early-type galaxies

    Get PDF
    About 20 percent of all nearby early-type galaxies (M6×109M_{\star} \gtrsim 6 \times 10^{9} M_{\odot}) outside the Virgo cluster are surrounded by a disc or ring of low-column-density neutral hydrogen (HI) gas with typical radii of tens of kpc, much larger than the stellar body. In order to understand the impact of these gas reservoirs on the host galaxies, we analyse the distribution of star formation out to large radii as a function of HI properties using GALEX UV and SDSS optical images. Our sample consists of 18 HI-rich galaxies as well as 55 control galaxies where no HI has been detected. In half of the HI-rich galaxies the radial UV profile changes slope at the position of the HI radial profile peak. To study the stellar populations, we calculate the FUV-NUV and UV-optical colours in two apertures, 1-3 and 3-10 Reff_{eff} . We find that HI -rich galaxies are on average 0.5 and 0.8 mag bluer than the HI-poor ones, respectively. This indicates that a significant fraction of the UV emission traces recent star formation and is associated with the HI gas. Using FUV emission as a proxy for star formation, we estimate the integrated star formation rate in the outer regions (R > 1Reff_{eff}) to be on average 6×1036 \times 10^{-3} M_{\odot} yr1^{-1} for the HI-rich galaxies. This rate is too low to build a substantial stellar disc and, therefore, change the morphology of the host. We find that the star formation efficiency and the gas depletion time are similar to those at the outskirts of spirals.Comment: 27 pages (13 without appendices). 9 figures, 5 tables, 2 appendix tables and 12 appendix figures. Accepted for publication in MNRA

    Young stellar populations in early-type dwarf galaxies; occurrence, radial extent and scaling relations

    Get PDF
    To understand the stellar population content of dwarf early-type galaxies (dEs) and its environmental dependence, we compare the slopes and intrinsic scatter of color-magnitude relations (CMRs) for three nearby clusters, Fornax, Virgo and Coma. Additionally we present and compare internal color profiles of these galaxies to identify central blue regions with younger stars. We use the imaging of the HST/ACS Fornax cluster in the magnitude range of -18.7 <= M_g' <= -16.0, to derive magnitudes, colors and color profiles, which we compare with literature measurements. Based on analysis of the color profiles, we report a large number of dEs with young stellar populations in their center in all three clusters. While for Virgo and Coma the number of blue-cored dEs is found to be 85 +/- 2% and 53 +/- 3% respectively, for Fornax, we find that all galaxies have a blue core. We show that bluer cores reside in fainter dEs, similar to the trend seen in nucleated dEs. We find no correlation between the luminosity of the galaxy and the size of its blue core. Moreover, a comparison of the CMRs of the three clusters shows that the scatter in Virgo's CMR is considerably larger than in the Fornax and Coma clusters. Presenting adaptive smoothing we show that the galaxies on the blue side of the CMR often show evidence for dust extinction, which strengthens the interpretation that the bluer colors are due to young stellar populations. We also find that outliers on the red side of the CMR are more compact than expected for their luminosity. We find several of these red outliers in Virgo, often close to more massive galaxies. No red outlying compact early-types are found in Fornax and Coma in this magnitude range while we find three in the Virgo cluster. We suggest that the large number of outliers and larger scatter found for the Virgo cluster CMR is a result of Virgo's different assembly history.Comment: 24 pages, accepted for publication in Astronomy and Astrophysic

    A confirmed location in the Galactic halo for the high-velocity cloud 'chain A'

    Get PDF
    The high-velocity clouds of atomic hydrogen, discovered about 35 years ago, have velocities inconsistent with simple Galactic rotation models that generally fit the stars and gas in the Milky Way disk. Their origins and role in Galactic evolution remain poorly understood, largely for lack of information on their distances. The high-velocity clouds might result from gas blown from the Milky Way disk into the halo by supernovae, in which case they would enrich the Galaxy with heavy elements as they fall back onto the disk. Alternatively, they may consist of metal-poor gas -- remnants of the era of galaxy formation, accreted by the Galaxy and reducing its metal abundance. Or they might be truly extragalactic objects in the Local Group of galaxies. Here we report a firm distance bracket for a large high-velocity cloud, Chain A, which places it in the Milky Way halo (2.5 to 7 kiloparsecs above the Galactic plane), rather than at an extragalactic distance, and constrains its gas mass to between 10^5 and 2 times 10^6 solar masses.Comment: 8 pages, including 4 postscript figures. Letter to Nature, 8 July 199
    corecore