1,360 research outputs found

    In-trap conversion electron spectroscopy

    Get PDF
    The Penning trap REXTRAP at ISOLDE was used to test the feasibility of in-trap conversion electron spectroscopy. The results of simulations, experiments with solid conversion electron sources as well as first on-line and tests with trapped radioactive ions are presented. In addition to obtaining high-resolution spectroscopic data, the detection of conversion electrons was found to be a useful tool for the diagnostics of the trap operation. The tests proved the feasibility of in-trap spectroscopy but also revealed some potential problems to be addressed in the future

    Fast and reliable pricing of American options with local volatility

    Get PDF
    We present globally convergent multigrid methods for the nonsymmetric obstacle problems as arising from the discretization of Black—Scholes models of American options with local volatilities and discrete data. No tuning or regularization parameters occur. Our approach relies on symmetrization by transformation and data recovery by superconvergence

    Epitaxy and magnetotransport of Sr_2FeMoO_6 thin films

    Full text link
    By pulsed-laser deposition epitaxial thin films of Sr_2FeMoO_6 have been pre- pared on (100) SrTiO_3 substrates. Already for a deposition temperature of 320 C epitaxial growth is achieved. Depending on deposition parameters the films show metallic or semiconducting behavior. At high (low) deposition temperature the Fe,Mo sublattice has a rock-salt (random) structure. The metallic samples have a large negative magnetoresistance which peaks at the Curie temperature. The magnetic moment was determined to 4 mu_B per formula unit (f.u.), in agreement with the expected value for an ideal ferrimagnetic arrangement. We found an ordinary Hall coefficient of -6.01x10^{-10} m^3/As at 300 K, corresponding to an electronlike charge-carrier density of 1.3 per Fe,Mo-pair. In the semiconducting films the magnetic moment is reduced to 1 mu_B/f.u. due to disorder in the Fe,Mo sublattice. In low fields an anomalous holelike contribution dominates the Hall voltage, which vanishes at low temperatures for the metallic films only.Comment: Institute of Physics, University of Mainz, Germany, 4 pages, including 5 pictures and 1 Table, submitted to Phys. Rev.

    Early changes in biochemical markers of bone formation during teriparatide therapy correlate with improvements in vertebral strength in men with glucocorticoid-induced osteoporosis

    Get PDF
    Summary: Changes of the bone formation marker PINP correlated positively with improvements in vertebral strength in men with glucocorticoid-induced osteoporosis (GIO) who received 18-month treatment with teriparatide, but not with risedronate. These results support the use of PINP as a surrogate marker of bone strength in GIO patients treated with teriparatide. Introduction: To investigate the correlations between biochemical markers of bone turnover and vertebral strength estimated by finite element analysis (FEA) in men with GIO. Methods: A total of 92 men with GIO were included in an 18-month, randomized, open-label trial of teriparatide (20 μg/day, n = 45) and risedronate (35 mg/week, n = 47). High-resolution quantitative computed tomography images of the 12th thoracic vertebra obtained at baseline, 6 and 18 months were converted into digital nonlinear FE models and subjected to anterior bending, axial compression and torsion. Stiffness and strength were computed for each model and loading mode. Serum biochemical markers of bone formation (amino-terminal-propeptide of type I collagen [PINP]) and bone resorption (type I collagen cross-linked C-telopeptide degradation fragments [CTx]) were measured at baseline, 3 months, 6 months and 18 months. A mixed-model of repeated measures analysed changes from baseline and between-group differences. Spearman correlations assessed the relationship between changes from baseline of bone markers with FEA variables. Results: PINP and CTx levels increased in the teriparatide group and decreased in the risedronate group. FEA-derived parameters increased in both groups, but were significantly higher at 18 months in the teriparatide group. Significant positive correlations were found between changes from baseline of PINP at 3, 6 and 18 months with changes in FE strength in the teriparatide-treated group, but not in the risedronate group. Conclusions: Positive correlations between changes in a biochemical marker of bone formation and improvement of biomechanical properties support the use of PINP as a surrogate marker of bone strength in teriparatide-treated GIO patients

    Perspectives on weak interactions in complex materials at different length scales

    Get PDF
    Nanocomposite materials consist of nanometer-sized quantum objects such as atoms, molecules, voids or nanoparticles embedded in a host material. These quantum objects can be exploited as a super-structure, which can be designed to create material properties targeted for specific applications. For electromagnetism, such targeted properties include field enhancements around the bandgap of a semiconductor used for solar cells, directional decay in topological insulators, high kinetic inductance in superconducting circuits, and many more. Despite very different application areas, all of these properties are united by the common aim of exploiting collective interaction effects between quantum objects. The literature on the topic spreads over very many different disciplines and scientific communities. In this review, we present a cross-disciplinary overview of different approaches for the creation, analysis and theoretical description of nanocomposites with applications related to electromagnetic properties
    • …
    corecore