13 research outputs found

    Pleuro-pulmonary tumours detected by clinical and chest X-ray analyses in rats transplanted with mesothelioma cells

    Get PDF
    New strategies for cancer therapy must be developed, especially in severe neoplasms such as malignant pleural mesothelioma. Animal models of cancer, as close as possible to the human situation, are needed to investigate novel therapeutical approaches. Orthotopic transplantation of cancer cells is then relevant and efforts should be made to follow up tumour evolution in animals. In the present study, we developed a method for the orthotopic growth of mesothelioma cells in the pleural cavity of Fischer 344 and nude rats, along with a procedure for clinical survey. Two mesothelioma cell lines, of rat and human origin, were inoculated by transthoracic puncture. Body weight determination and chest X-ray analyses permitted the follow-up of tumour evolution by identifying different stages. Autopsies showed that tumours localized on the whole pleural cavity (diaphragm, parietal pleura), mediastinum and pericardium. Tumour morphology and antigenic characteristics were consistent with those of the inoculated cells and were similar in both types of rats inoculated with the same cell type. These results demonstrate that mesothelioma formation in rats can be followed up by clinical and radiographic survey after gentle intrathoracic inoculation of mesothelioma cells, thus allowing the definition of stages of interest for further experimental trials. © 1999 Cancer Research Campaig

    Targeting a Newly Established Spontaneous Feline Fibrosarcoma Cell Line by Gene Transfer

    Get PDF
    Fibrosarcoma is a deadly disease in cats and is significantly more often located at classical vaccine injections sites. More rare forms of spontaneous non-vaccination site (NSV) fibrosarcomas have been described and have been found associated to genetic alterations. Purpose of this study was to compare the efficacy of adenoviral gene transfer in NVS fibrosarcoma. We isolated and characterized a NVS fibrosarcoma cell line (Cocca-6A) from a spontaneous fibrosarcoma that occurred in a domestic calico cat. The feline cells were karyotyped and their chromosome number was counted using a Giemsa staining. Adenoviral gene transfer was verified by western blot analysis. Flow cytometry assay and Annexin-V were used to study cell-cycle changes and cell death of transduced cells. Cocca-6A fibrosarcoma cells were morphologically and cytogenetically characterized. Giemsa block staining of metaphase spreads of the Cocca-6A cells showed deletion of one of the E1 chromosomes, where feline p53 maps. Semi-quantitative PCR demonstrated reduction of p53 genomic DNA in the Cocca-6A cells. Adenoviral gene transfer determined a remarkable effect on the viability and growth of the Cocca-6A cells following single transduction with adenoviruses carrying Mda-7/IL-24 or IFN-γ or various combination of RB/p105, Ras-DN, IFN-γ, and Mda-7 gene transfer. Therapy for feline fibrosarcomas is often insufficient for long lasting tumor eradication. More gene transfer studies should be conducted in order to understand if these viral vectors could be applicable regardless the origin (spontaneous vs. vaccine induced) of feline fibrosarcomas

    The Soluble Chain of Interleukin-15 Receptor: A Proinflammatory Molecule Associated with Tumor Progression in Head and Neck Cancer

    No full text
    International audienceInterleukin (IL)-15 is a proinflammatory cytokine, as it induces the production of inflammatory cytokines [IL-6, tumor necrosis factor alpha (TNFalpha), IL-17, etc.]. A correlation between high intratumoral IL-15 concentrations and poor clinical outcome in lung and head and neck cancer patients has been recently reported. The purpose of this study was to investigate the role of the soluble alpha chain of IL-15 receptor (sIL-15Ralpha), a natural regulator of IL-15, in head and neck cancer. Fifty-three newly diagnosed untreated head and neck cancer patients were included in this study. Quantification of sIL-15Ralpha was performed with a newly developed RIA. Increased serum sIL-15Ralpha concentrations were found in head and neck cancer patients and were closely correlated with poor clinical outcome both in terms of locoregional control and survival even on multivariate analysis. sIL-15Ralpha was mainly produced by tumor cells via proteolytic cleavage of IL-15Ralpha mediated by ADAM-17. A correlation was observed between ADAM-17 expression in tumor cells and serum sIL-15Ralpha concentrations. Surprisingly, sIL-15Ralpha did not act in vitro as an IL-15 antagonist but rather as an enhancer of IL-15-induced proinflammatory cytokines (IL-6, TNFalpha, and IL-17) that may promote tumor progression. This new tumor evasion mechanism based on amplification of the intratumoral inflammatory reaction is probably not restricted to head and neck cancer, as other tumors have been shown to release sIL-15Ralpha. Overall, these results support for the first time an original protumor role of sIL-15Ralpha in cancer
    corecore