603 research outputs found

    Projection and Galaxy Clustering Fourier Spectra

    Get PDF
    Second order perturbation theory predicts a specific dependence of the bispectrum, or three-point correlation function in the Fourier transform domain, on the shape of the configuration of its three wave vector arguments, which can be taken as a signature of structure formed by gravitational instability. Comparing this known dependence on configuration shape with the weak shape dependence of the galaxy bispectrum has been suggested as an indication of bias in the galaxy distribution. However, to interpret results obtained from projected catalogs, we must first understand the effects of projection on this shape dependence. We present expressions for the projected power spectrum and bispectrum in both Cartesian and spherical geometries, and we examine the effects of projection on the predicted bispectrum with particular attention to the dependence on configuration shape. Except for an overall numerical factor, for Cartesian projection with characteristic depth \Dstar there is little effect on the shape dependence of the bispectrum for wavelengths small compared to \Dstar or projected wavenumbers q \Dstar \gg 1 . For angular projection, a scaling law is found for spherical harmonic index ℓ≫1 \ell \gg 1 , but there is always a mixing of scales over the range of the selection function. For large ℓ \ell it is sufficient to examine a small portion of the sky.Comment: aastex, 7 figure

    Spontaneous bilateral subdural haematomas in the posterior cranial fossa revealed by MRI

    Get PDF
    A 52-year-old woman treated for acute myeloproliferative disease developed progressive stupor. CT showed obstructive hydrocephalus resulting from unexplained mass effect on the fourth ventricle. MRI revealed bilateral extra-axial collections in the posterior cranial fossa, giving high signal on T1- and T2-weighted images, suggesting subacute subdural haematomas. Subdural haematomas can be suspected on CT when there is unexplained mass effect. MRI may be essential to confirm the diagnosis and plan appropriate treatmen

    Validation of Experts versus Atlas-based and Automatic Registration Methods for Subthalamic Nucleus Targeting on MRI

    Get PDF
    Objects In functional stereotactic neurosurgery, one of the cornerstones upon which the success and the operating time depends is an accurate targeting. The subthalamic nucleus (STN) is the usual target involved when applying deep brain stimulation for Parkinson's disease (PD). Unfortunately, STN is usually not clearly visible in common medical imaging modalities, which justifies the use of atlas-based segmentation techniques to infer the STN location. Materials and methods Eight bilaterally implanted PD patients were included in this study. A three-dimensional T1-weighted sequence and inversion recovery T2-weighted coronal slices were acquired pre-operatively. We propose a methodology for the construction of a ground truth of the STN location and a scheme that allows both, to perform a comparison between different non-rigid registration algorithms and to evaluate their usability to locate the STN automatically. Results The intra-expert variability in identifying the STN location is 1.06±0.61mm while the best non-rigid registration method gives an error of 1.80±0.62mm. On the other hand, statistical tests show that an affine registration with only 12 degrees of freedom is not enough for this application. Conclusions Using our validation-evaluation scheme, we demonstrate that automatic STN localization is possible and accurate with non-rigid registration algorithm

    The VIMOS-VLT Deep Survey: Dependence of galaxy clustering on stellar mass

    Full text link
    We have investigated the dependence of galaxy clustering on their stellar mass at z~1, using the data from the VIMOS-VLT Deep Survey (VVDS). We have measured the projected two-point correlation function of galaxies, wp(rp) for a set of stellar mass selected samples at an effective redshift =0.85. We have control and quantify all effects on galaxy clustering due to the incompleteness of our low mass samples. We find that more massive galaxies are more clustered. When compared to similar results at z~0.1 in the SDSS, we observed no evolution of the projected correlation function for massive galaxies. These objects present a stronger linear bias at z~1 with respect to low mass galaxies. As expected, massive objects at high redshift are found in the highest pics of the dark matter density field.Comment: 4 pages, 2 figures, 43rd Rencontres de Moriond - March 15-22, 2008 - La Thuile (Val d'Aosta, Italy

    Validation of Experts versus Atlas-based and Automatic Registration Methods for Subthalamic Nucleus Targeting on MRI

    Get PDF
    Objects In functional stereotactic neurosurgery, one of the cornerstones upon which the success and the operating time depends is an accurate targeting. The subthalamic nucleus (STN) is the usual target involved when applying deep brain stimulation for Parkinson's disease (PD). Unfortunately, STN is usually not clearly visible in common medical imaging modalities, which justifies the use of atlas-based segmentation techniques to infer the STN location. Materials and methods Eight bilaterally implanted PD patients were included in this study. A three-dimensional T1-weighted sequence and inversion recovery T2-weighted coronal slices were acquired pre-operatively. We propose a methodology for the construction of a ground truth of the STN location and a scheme that allows both, to perform a comparison between different non-rigid registration algorithms and to evaluate their usability to locate the STN automatically. Results The intra-expert variability in identifying the STN location is 1.06±0.61mm while the best non-rigid registration method gives an error of 1.80±0.62mm. On the other hand, statistical tests show that an affine registration with only 12 degrees of freedom is not enough for this application. Conclusions Using our validation-evaluation scheme, we demonstrate that automatic STN localization is possible and accurate with non-rigid registration algorithm

    Influence of star-forming galaxy selection on the galaxy main sequence

    Full text link
    This work aims to determine how the galaxy main sequence (MS) changes using seven different commonly used methods to select the star-forming galaxies within VIPERS data over 0.5≤z<1.20.5 \leq z < 1.2. The form and redshift evolution of the MS will then be compared between selection methods. The star-forming galaxies were selected using widely known methods: a specific star-formation rate (sSFR), Baldwin, Phillips and Terlevich (BPT) diagram, 4000\AA\ spectral break (D4000) cut and four colour-colour cuts: NUVrJ, NUVrK, u-r, and UVJ. The main sequences were then fitted for each of the seven selection methods using a Markov chain Monte Carlo forward modelling routine, fitting both a linear main sequence and a MS with a high-mass turn-over to the star-forming galaxies. This was done in four redshift bins of 0.50≤z<0.620.50 \leq z < 0.62, 0.62≤z<0.720.62 \leq z < 0.72, 0.72≤z<0.850.72 \leq z < 0.85, and 0.85≤z<1.200.85 \leq z < 1.20. The slopes of all star-forming samples were found to either remain constant or increase with redshift, and the scatters were approximately constant. There is no clear redshift dependency of the presence of a high-mass turn-over for the majority of samples, with the NUVrJ and NUVrK being the only samples with turn-overs only at low redshift. No samples have turn-overs at all redshifts. Star-forming galaxies selected with sSFR and u-r are the only samples to have no high-mass turn-over in all redshift bins. The normalisation of the MS increases with redshift, as expected. The scatter around the MS is lower than the ≈\approx0.3~dex typically seen in MS studies for all seven samples. The lack, or presence, of a high-mass turn-over is at least partially a result of the method used to select star-forming galaxies. However, whether a turn-over should be present or not is unclear.Comment: 20 pages, 3 appendices, 14 figures, 5 tables, accepted for publication in Astronomy & Astrophysic

    Observational Evidence for the Co-evolution of Galaxy Mergers, Quasars, and the Blue/Red Galaxy Transition

    Get PDF
    We compile a number of observations to estimate the time-averaged rate of formation or buildup of red sequence galaxies, as a function of mass and redshift. Comparing this with the mass functions of mergers and quasar hosts, and independently comparing their clustering properties as a function of redshift, we find that these populations trace the same mass distribution, with similar evolution, at redshifts 0<z<~1.5. Knowing one of the quasar, merger, or elliptical mass/luminosity functions, it is possible to predict the others. Allowing for greater model dependence, we compare the rate of early-type buildup with the implied merger and quasar triggering rates as a function of mass and redshift and find agreement. Over this redshift range, observed merger fractions can account for the entire bright quasar luminosity function and buildup of the red sequence at all but the highest masses at low redshift (>~10^11 M_solar at z<~0.3) where 'dry' mergers appear to dominate. This supports a necessary prediction of theories where mergers between gas-rich galaxies produce ellipticals with an associated phase of quasar activity, after which the remnant becomes red. These populations trace a similar characteristic transition mass, possibly reflecting the mass above which the elliptical population is mostly (>~50%) assembled at a given redshift, which increases with redshift over the observed range in a manner consistent with suggestions that cosmic downsizing may apply to red galaxy assembly as well as star formation. These mass distributions as a function of redshift do not uniformly trace the all/red/blue galaxy population, ruling out models in which quasar activity is generically associated with star formation or is long lived in 'old' systems.Comment: 24 pages, 17 figures. Accepted to ApJ. Substantially revised and expanded to match published versio

    Automatic Subthalamic Nucleus Targeting for Deep Brain Stimulation. A Validation Study

    Get PDF
    In functional stereotactic neurosurgery, one of the cornerstones upon which the success and the operating time depends is an accurate targeting. The subthalamic nucleus (STN) is the usual target involved when applying Deep Brain Stimulation (DBS) for the Parkinsons disease (PD). Unfortunately, STN is usually not clearly visible in common medical imaging modalities, which justifies the use of atlas-based segmentation techniques to infer the STN location. We propose a scheme that allows both, to perform a comparison between different non-rigid atlas registration algorithms and to evaluate their usability to locate the STN automatically. Using our validation evaluation scheme and accurate registration algorithms we demonstrate that automatic STN localization is possible and accurate

    feature-segmentation-based registration for fast and accurate deep brain stimulation targeting

    Get PDF
    Objects Deep brain stimulation (DBS) has turned out to be the surgical technique of choice for the treatment of movement disorders, e.g. Parkinsons disease (PD), the usual target being the subthalamic nucleus (STN). The targeting of such a small structure is crucial for the outcome of the surgery. Unfortunately the STN is in general not easily distinguishable in common medical images. Material and Methods Eight bilaterally implanted PD patients were considered (16 STNs). A three-dimensional MR T1-weighted sequence and inversion recovery T2-weighted coronal slices were acquired pre-operatively. We study the influence on the STN location of several surrounding structures through a proposed methodology for the construction of a ground truth and an original validation scheme that allows evaluating performances of different targeting methods. Results The inter-expert variability in identifying the STN location is 1.61 ± 0.29 mm and 1.40 ± 0.38 mm for expert 1 and 2 respectively while the best choice of features using segmentation-based registration gives an error of 1.55 ± 0.73 mm. Conclusions By registering a binary mask of the third and lateral ventricles of the patient with its corresponding binary mask of the atlas we obtain a fast, automatic and accurate pre-operative targeting comparable to the experts variability

    First Ex-Vivo Validation of a Radioguided Surgery Technique with beta- Radiation

    Full text link
    Purpose: A radio-guided surgery technique with beta- -emitting radio-tracers was suggested to overcome the effect of the large penetration of gamma radiation. The feasibility studies in the case of brain tumors and abdominal neuro-endocrine tumors were based on simulations starting from PET images with several underlying assumptions. This paper reports, as proof-of-principle of this technique, an ex-vivo test on a meningioma patient. This test allowed to validate the whole chain, from the evaluation of the SUV of the tumor, to the assumptions on the bio-distribution and the signal detection. Methods: A patient affected by meningioma was administered 300 MBq of 90Y-DOTATOC. Several samples extracted from the meningioma and the nearby Dura Mater were analyzed with a beta- probe designed specifically for this radio-guided surgery technique. The observed signals were compared both with the evaluation from the histology and with the Monte Carlo simulation. Results: we obtained a large signal on the bulk tumor (105 cps) and a significant signal on residuals of ∼\sim0.2 ml (28 cps). We also show that simulations predict correctly the observed yields and this allows us to estimate that the healthy tissues would return negligible signals (~1 cps). This test also demonstrated that the exposure of the medical staff is negligible and that among the biological wastes only urine has a significant activity. Conclusions: This proof-of-principle test on a patient assessed that the technique is feasible with negligible background to medical personnel and confirmed that the expectations obtained with Monte Carlo simulations starting from diagnostic PET images are correct.Comment: 17 pages, 4 Figs, Accepted by Physica Medic
    • …
    corecore