83 research outputs found

    Scaling behavior in the adiabatic Dicke Model

    Full text link
    We analyze the quantum phase transition for a set of NN-two level systems interacting with a bosonic mode in the adiabatic regime. Through the Born-Oppenheimer approximation, we obtain the finite-size scaling expansion for many physical observables and, in particular, for the entanglement content of the system.Comment: 4 pages, 3 figure

    Discording power of quantum evolutions

    Get PDF
    We introduce the discording power of a unitary transformation, which assesses its capability to produce quantum discord, and analyze in detail the generation of discord by relevant classes of two-qubit gates. Our measure is based on the Cartan decomposition of two-qubit unitaries and on evaluating the maximum discord achievable by a unitary upon acting on classical-classical states at fixed purity. We found that there exist gates which are perfect discorders for any value of purity, and that they belong to a class of operators that includes the $\sqrt{{SWAP}}. Other gates, even those universal for quantum computation, do not posses the same property: the CNOT, for example, is a perfect discorder only for states with low or unit purity, but not for intermediate values. The discording power of a two-qubit unitary also provides a generalization of the corresponding measure defined for entanglement to any value of the purity.Comment: accepted for publication in Physical Review Letter

    Exact spectral function of a Tonks-Girardeau gas in a lattice

    Full text link
    The single-particle spectral function of a strongly correlated system is an essential ingredient to describe its dynamics and transport properties. We develop a general method to calculate the exact spectral function of a strongly interacting one-dimensional Bose gas in the Tonks-Girardeau regime, valid for any type of confining potential, and apply it to bosons on a lattice to obtain the full spectral function, at all energy and momentum scales. We find that it displays three main singularity lines. The first two can be identified as the analogs of Lieb-I and Lieb-II modes of a uniform fluid; the third one, instead, is specifically due to the presence of the lattice. We show that the spectral function displays a power-law behaviour close to the Lieb-I and Lieb-II singularities, as predicted by the non-linear Luttinger liquid description, and obtain the exact exponents. In particular, the Lieb-II mode shows a divergence in the spectral function, differently from what happens in the dynamical structure factor, thus providing a route to probe it in experiments with ultracold atoms.Comment: 10 pages, 3 figure

    Quantum-state transfer via resonant tunnelling through local field induced barriers

    Get PDF
    Efficient quantum-state transfer is achieved in a uniformly coupled spin-1/2 chain, with open boundaries, by application of local magnetic fields on the second and last-but-one spins, respectively. These effective \textit{barriers} induce appearance of two eigenstates, bi-localized at the edges of the chain, which allow a high quality transfer also at relatively long distances. The same mechanism may be used to send an entire e-bit (e.g., an entangled qubit pair) from one to the other end of the chain

    Quantum Otto cycle with inner friction: finite-time and disorder effects

    Get PDF
    The concept of inner friction, by which a quantum heat engine is unable to follow adiabatically its strokes and thus dissipates useful energy, is illustrated in an exact physical model where the working substance consists of an ensemble of misaligned spins interacting with a magnetic field and performing the Otto cycle. The effect of this static disorder under a finite-time cycle gives a new perspective of the concept of inner friction under realistic settings. We investigate the efficiency and power of this engine and relate its performance to the amount of friction from misalignment and to the temperature difference between heat baths. Finally we propose an alternative experimental implementation of the cycle where the spin is encoded in the degree of polarization of photons.Comment: Published version in the Focus Issue on "Quantum Thermodynamics

    Decoherence in a fermion environment: Non-Markovianity and Orthogonality Catastrophe

    Get PDF
    We analyze the non-Markovian character of the dynamics of an open two-level atom interacting with a gas of ultra-cold fermions. In particular, we discuss the connection between the phenomena of orthogonality catastrophe and Fermi edge singularity occurring in such a kind of environment and the memory-keeping effects which are displayed in the time evolution of the open system
    • …
    corecore