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Abstract
The concept of inner friction, bywhich a quantumheat engine is unable to follow adiabatically its
strokes and thus dissipates useful energy, is illustrated in an exact physicalmodel where theworking
substance consists of an ensemble ofmisaligned spins interactingwith amagneticfield andperforming
theOtto cycle. The effect of this static disorder under afinite-time cycle gives a newperspective of the
concept of inner friction under realistic settings.We investigate the efficiency and power of this engine
and relate its performance to the amount of friction frommisalignment and to the temperature
difference between heat baths. Finally we propose an alternative experimental implementation of the
cycle where the spin is encoded in the degree of polarization of photons.

1. Introduction

The recent boosting interest in the study of the quantum counterpart of classical well-knownheat engines such
as theOtto, Carnot, Stirling, and Szilard ones [1–8], has beenmotivated both by the need of a fundamental
understanding of the limits imposed by quantummechanics on the thermodynamic performances of small
devices (in terms of both efficiency and power output) and by the growing experimental ability to control
various types of quantum systemswith a high degree of accuracy. There have been, indeed,many proposals
aimed at implementing thermodynamic transformations and cycles withmany different quantumworking
substances, ranging from trapped ions tomagneticmaterials [9], with the prospect of building quantumheat
engines, exploring the abilities and limitations of quantummachines in converting heat intowork, and, onmore
general ground, building a self-contained description of thermodynamics in the quantum regime. As a specific
example, an interesting proposal in this respect has beenmade for implementing a nanoheat enginewith a single
trapped ion performing a quantumOtto cycle (QOC) [10]. Besides its specific applications, this is an important
example, as theQOCconstitutes a useful test ground to study irreversibility in the quantum realm.

Indeed, the cycle consists of two isochoric thermalization branches (with afixed systemHamiltonian) and
two isentropic branches, inwhich the system is detached from the thermal baths and its evolution is generated by
a parametric time-dependentHamiltonian. Every practical realization of these latter transformations has to face
the general problemof understanding and describing the (unwanted) irreversible entropy production, which
can occur in non-ideal, finite-time quantumparametric processes. This general problemhas been variously
analyzed through the use offluctuation relations [11, 12] and has attracted a lot of attention in recent
years [13, 14].

In this paper, we explicitly address the study of theOtto cycle by focusing on the finite-time case and
discussing the implications offinite-time transformations as opposed to ideal, infinitely lasting ones. In this
respect, in a series of papers, Kosloff and Feldmann [15–17] introduced the concept of intrinsic/inner friction,
whereby the engine is never able to accomplish a frictionless adiabatic transformation and thus loses power. This
concept has been extended and applied to various contexts [12, 18, 19].
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Inner friction is a fully quantumphenomenon, whose consequences are similar to those of themechanical
friction occurringwhen displacing a piston in compressing/expanding a gas in a classical thermodynamic
setting. Its origin, however, is completely different: when the external controlHamiltonian does not commute
with the internal one, the states of theworking fluid cannot follow the instantaneous energy levels, leading to
additional energy stored in theworkingmedium. Inner friction is thus associated to diabatic transitions, i.e.,
changes of populationswhich occur during the time-dependent adiabatic (here referring to a closed system)
strokes if they are performed atfinite speed.

So far inner friction occurring in specific cycles and transformations has been analyzed by adopting
phenomenodlogical and physicallymotivated assumptions about the explicit time dependence of the
population changes (e.g., in [15], a friction coefficient is introduced, giving rise to a constant dissipated power).
Our treatment, instead, does not rely on any ad hoc assumption, but rather on the exact dynamics of theworking
substance. This is important because it has been shown [12] that inner friction is not only an indicator of
irreversibility of a quantumprocess, but also a quantitativemeasure of its amount. It is therefore crucial to
identify and highlight its role in the efficiency reduction offinite-time cycles by analyzing the full quantum
dynamics that produces it.

In particular, wewill explore the quantum friction arising fromdisorder within the sample playing the role
of aworking substance.Wewill consider an ensemble of qubits in a setting inwhich theirHamiltonian
parameters are not homogeneous and connect the presence of these static errors to the appearance of friction and
losses during the implementation of theOtto cycle. Explicitly, we provide a quantitative analysis of the amount
of losses due to the inner friction as a function of the degree of disorder.

Indeed, the performance of the heatmachine is negatively affected by inner friction, and the cycle’s outputs,
such as extractedwork, power, and efficiency, are gradually suppressed as disorder and friction increase.

The remainder of the paper is organized as follows. In sections 2.1 and 2.2we introduce and review the
concept of inner friction by focusing on the particular case of a spin system in the presence ofmisalignments and
disorder, whichwill then be of interest for the rest of the present paper. In section 2.3we introduce theQOCand
its constituent transformations, specifying the assumptions about themodel we use to describe theworking
substance. In section 3we present and discuss ourmain results, while in section 4we propose a feasible
experimental implementation of theQOC in order to test ourfindings. Finally, section 5 is devoted to some
concluding remarks and to a discussion of possible future developments.

2.Model andmethodology

In this sectionwe introduce themodel and give a possible explanation of the origin of inner friction.We then
introduce theQOCand the figures ofmerit throughwhich the cycle will be characterized.

2.1.Misalignment and disordered samples
In order to understandwhatwemean by losses and friction in a closed quantum system, and in particular in the
case of one qubit, let us focus on the dynamics generated by aHamiltonian of the form:

H t t( ( ))
2

( )(cos sin ). (1)z z x
0λ

ω
σ λ θσ θσ= + +

The analysis reported here applies to the general case of qubit dynamics (1), and in the followingwewill consider
the case of a spin interacting with amagnetic field (sections 2 and 3) aswell as of a qubit encoded in photon
polarization (optical implementation in section 4).

An adiabatic transformation is obtained by the unitary time evolution generated by theHamiltonian (1),
with a linear driving of the externalfield at afixed rate t t( ) 20λ αω= , whichwe allow to bemisaligned by an
angle θwith respect to the staticfield 0ω . Themisalignment affects the energy spacing as well as the eigenstates
and the populations.

We assume that at t=0 the qubit in a thermal state is at inverse temperature β. For a very slow driving, ideally
taking an infinite-time to complete the transformation in the quantumadiabatic regime, the qubit populations
would remain unchangedwhile the the energy spacing increases/decreases, and the system remains in a thermal
state with a lower/higher temperature. The same occurs in the absence ofmisalignment, 0θ = in equation (1),
as in this simple scenario, where the adiabatic transformation

H t t t( ) , with ( )
2

( ) (2)z
0ω σ ω

ω
λ= = +

reduces to a compression/expansion of the energy spacing of the qubit, thus preserving the initial thermal
populations even in the presence of fast driving.

2

New J. Phys. 17 (2015) 075007 AAlecce et al



Interesting dynamical and thermodynamical implications arise, instead, when considering deviations from
the limit of perfect alignment ( 0θ ≠ ). This is the case that we are going to explore in this work in order to
characterize inner friction and its effects on the efficiency of quantum thermalmachines, resulting from the
simultaneous presence of the static field 0ω and of themisaligned time-dependent part t( )λ . Our aim it to apply
this analysis to an ensemble of (independent) spins, considering some degree of disorder and looking at average
effects across the sample. In particular, this can correspond to different situations, as represented infigure 1.
A condensed systemon a lattice, with embeddedmagnetic dipoles having disordered orientations, can be
modelled by randomly oriented spinswith tilting angles iθ (i 1, 2,= …) with respect to the direction of a
uniform externalfield.We assume that the distribution of the spin orientations in the sample is given by a
function G ( )θ . Alternatively, all sample dipoles could be perfectly aligned in an ordered configuration, but the
inner friction could be due to inhomogeneity of the externalfields in space (figure 1(b)). Thefield orientation
across the sample would be given, in this case, again by the function G ( )θ .

2.2. Inner friction and irreversibility
In order to have a simple physical picture for the behavior of our quantummachine, let us first consider the
simpler case of a driven quantum two-level systemundergoing the unitary dynamics generated by a parametric,
time-dependentHamiltonian H t[ ( )]λ . If the parameter t( )λ changes slowly enough (in the sense of the
quantumadiabatic theorem [20, 21]), the system evolves without its energy population ever changing at all, even
if the instantaneous energy eigenvalues and eigenstates do change in time. If the systemhas been prepared in
equilibriumwith a thermal bath, which is then removed, such an ideal adiabatic parameter change keeps the
system in an equilibrium state at every stage. In particular, if the parameter λ gets back to its initial value after
some time, thefinal result is that the system is brought back to its initial state. On the other hand, if the cycle is
performed infinite-time, thefinal state of the systemwill differ from the equilibrium state it started in, because a
non-adiabatic transition has taken place [22]. The difference between the two states, if properly quantified, can
be regarded as ameasure of the deviation froman ideal adiabatic transformation. The quantumnon-adiabaticity
has the same effects as friction has in a classical context: an extra energy is needed to complete the process
(indeed, thework done in the ideal adiabatic is always smaller than the one performed infinite-time; see
[12, 21]), which is then dissipated if the system equilibrates at the end of the process.

With this picture inmind, let us now address the dynamics generated byHamiltonian (1) on an initial
thermal state given by H Hexp{ ( (0))}/Tr[exp{ ( (0))}]0ρ β λ β λ= − − , where β is the inverse temperature in

units of the Boltzmann constant. By changing t( )λ very slowly from (0)λ at t=0 up to t( ) *fλ λ= at t t f= and

then going back from *λ to (0)λ , the systemwill be brought back into its initial state. To discuss what happens in
the general case, namely, when these changes are performed atfinite rates, we consider the following protocols:

( )

( )
(3)

U t

U t

0

0,

1

2
0,

1

F F

B B

ρ ρ
ρ ρ

⎯ →⎯⎯⎯⎯⎯⎯⎯
← ⎯⎯⎯⎯⎯⎯⎯⎯

The forward protocol, defined by the unitary operatorU t(0, ) eF F
H di ( ( ))

t F

F
0 ∫= λ τ τ− ( being the time

ordering operator), is generated by theHamiltonian in equation (1), such that t t( ) 2F F 0λ α ω= . It takes the

initial densitymatrix 0ρ to U t U t(0, ) (0, )F F F F1 0
†ρ ρ= . The backward protocolU t(0, ) eB B

H di ( ( ))
t B

B
0 ∫= λ τ τ−

is again generated by theHamiltonian in equation (1), where now t t t( ) ( ) 2B F F B 0λ λ α ω= − with the
condition that t( ) (0)B B Fλ λ= . This consists just in ramping up and down the field t( )λ with different rates Fα
and Bα , respectively.

Figure 1.Misalignment effects of a sample of spins interactingwith an externalfield due to (a) disorder within the sample or (b) lack of
uniformity of themagnetic field (e.g., because of the finite length of the coil).
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In order to characterize the above protocol, wefirst look at the time-dependent polarization, defined as
n t t H t t( ) Tr[ ( ) ( )] ( )ρ ω= , where t( )ω is the energy level spacing at time t for both the forward and backward
protocols. The result is shown infigure 2(a), wherewe notice that finite-time evolution introduces deviations
with respect to the quantum adiabatic case, as expected.Moreover, as it can be seen infigure 2(b), by applying
the forward and backward protocols defined above, the systemdoes not get back to its initial state, but reaches a
different polarization (green line) at the end of the protocol. This already gives a quantitative indication that
finite-time control leads to an irreversible behavior. Here, we use theword ‘irreversibility’ in the thermodynamic
sense: because of the occurrence of non-adiabatic transitions, the system is driven out of themanifold of
equilibrium states, and application of the same protocol in reverse does not bring it back to the initial state.

Amore precise way of quantifying the irreversibility of such a transformation is through the distance of the
final state from the initial one, expressed in terms of the relative entropy D ( )2 0ρ ρ∣∣ , where

U t U t(0, ) (0, )B B B B2 1
†ρ ρ= . As shown in [12], this quantity has a well-defined thermodynamical

interpretation, as it precisely gives the non-adiabatic part of thework performed on the systemby the driving
agent, i.e., the inner friction.

Indeed, for an adiabatic transformation, the quantum relative entropy between the actualfinal state and the
ideal thermal equilibriumone is proportional to the difference between thework done on the systemduring the
parametric change and the same quantity taken in the infinitely slow limit. This is precisely the definition of the
inner friction, hereafter calledWfric [12]. Furthermore, the same quantity is linked to the generation of extra
heat, that is to say, to the irreversible production of ‘waste energy.’This extra energy is exactly the energy that
needs to be dissipated if, at the end of the protocol, wewere to thermalize the system to the initial temperature.
Specifically, the following relations hold:

( )Q W D( ) (4)fric2 0 2 0β ρ ρ β ρ ρ− → = =

where Q ( )2 0ρ ρ→ is the heat the system takes to thermalize at the initial inverse temperature β. This is whatwe
shall refer to as inner friction in the following.

The inner friction for the time evolution described above is reported infigure 3, wherewe can clearly see that
when both transformations are either very slow (quantum adiabatic case) or very fast (‘diabatic’ or sudden case);
at the end of the protocol the system is found to be in (or very close to) its initial state. For finite-time
transformations, however, the systemdoes not get back to its initial state. From a dynamical point of view, this is
not surprising; however, if interpreted froma thermodynamical perspective, this fact suggests that
transformations done infinite-time are, in general, irreversible ones.

2.3.Model for the quantumOtto cycle (time scale assumptions)
TheOtto cycle is the simplest cycle for our purposes, as it allows for a clear separation between dissipative steps
(thermalization processes, in contact with a thermal bath) fromnon-dissipative ones (in whichwork is done or
extracted), as opposed, for instance, to theCarnot cycle, which contains two isotherms inwhich one has to
perform (extract) workwhile the system is attached to a thermal bath. This separationwill be very useful in order
to identifyfinite-time effects on the single adiabatic transformations and thus on the total cycle.

Figure 2.The left panel shows the time dependence of the polarization n(t) for a finite-time adiabatic transformation (solid blue line)
comparedwith the case of an ideal quantum adiabatic one (dashed red line).We used 10F

4
0α ω= − . In the right panel, we compare

the forward evolution (lower time axis from left to right) with the backward one (upper time axis from right to left) by displaying the
time-dependent polarization in both processes. The parameters used are t t 15F F B Bα α= = and F B 0α α ω= = . In bothfigures

5.θ π=

4
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The quantum version of theOtto cycle is the composition of two adiabatic transformations, inwhich the
systems evolves unitarily, and two isochoric branches corresponding to thermalization in contact with a hot
(and, respectively, a cold) heat bath at temperature h

1β − ( c
1β− ).

In the next subsectionswe better specify the assumptionswe employ to describe the different branches of the
QOCand the physical quantities we investigate to characterize it. The idealOtto cycle is represented by the
dashed (yellow) rectangle in figure 4. The blue line, instead, describes afinite-time cycle inwhich the endpoints
of the adiabatic strokes aremoved towards larger values of n (which justmeans that there ismore population
than expected in the excited states) because of the presence of inner friction.

Figure 3.The quantum relative entropy between the state at the end of the backward step and the initial thermal state 0ρ . Notice that
inner friction is very close to zero both for 0F B,α → and F B,α → ∞. The inverse temperature characterizing the initial state is taken to
be equal to the energy spacing 0ω . Here 5θ π= and t t 15F F B Bα α= = .

Figure 4.Representation of theOtto cycle in a parameter space inwhich the horizontal axis gives the instantaneous energy spacing
between the eigenstates of theHamiltonian (1), while the vertical axis gives the polarization. The solid blue line is an example of a
finite-timeOtto cycle with parameters:

5
θ = π , t t 0.55130α ω= = , c 0

1β ω= − and 2h cβ β= . The dashed yellow line corresponds to

an ideal (infinite-time)Otto cycle. The two red lines are the isotherms in this plane. They include the two (very fast) branches inwhich
the system equilibrates in contact with baths at inverse temperatures cβ and hβ , respectively.
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2.3.1. Adiabatic transformation
As alreadymentioned above, the adiabatic transformations can be described by the unitary operator generated
by theHamiltonian in equation (1). For simplicity, in the followingwewill consider the casewhere the two
adiabatic branches (1 2→ and 3 4→ ) last equally long, namely, t tF B adτ= = , and have the same rate of
change for thefield F Bα α= .

2.3.2. Isochoric transformations
For the isochoric transformations, we assume perfect thermalization at the given temperatures h

1β − , c
1β− (hot

and cold, respectively). To study the relation between inner friction and the finite-time of the adiabatic branches,
wewill assume that perfect thermalization is achieved very quickly with respect to all other time scales and also
that the isochoric branchwill be assignedwith afixed short-time duration (to be eventually neglected) with
respect to adiabatic ones, but longwith respect to thermalization time of the system:

(5)therm iso adτ τ τ≪ ≪

where thermτ , isoτ , and adτ are the typical time scales for the thermalization process, isochoric and adiabatic
transformations, respectively.

2.4. Figures ofmerit
In order to characterize theQOC,wewill look at the extractable work,Wex, at the power  , at the efficiency η,
and at their averages over disorder.

To properly define these quantities, let us start by defining thework done on an adiabatic branch as:

W H HTr Tr (6)f f i i
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ρ ρ= −

where H H( )i f and ( )i fρ ρ are theHamiltonian and the densitymatrix of the system at the beginning (end) of

each transformation. In particular, both adiabatic transformations start with aGibbs-like state, sincewe assume
perfect thermalization to occur at the end of each isochore. In the adiabatic transformations, thework defined in
equation (6) does coincide with the firstmoment of thework distribution for closed but non-autonomous
systems [25].On the other hand, such awork distribution allows to define afluctuation relation, and thus its
moments have a clear thermodynamicalmeaning.

In the isochoric branches, we have that the initial and finalHamiltonians are the same, and the final state fρ
is thermal and thus diagonal in the energy eigenbasis. The amount of energy exchanged between the reservoir
and the system in each isochoric transformation is given by:

( ) ( ) ( )Q p p p p p p . (7)iso
f i f i i f

1 1
( )

1
( )

0 0
( )

0
( )

0
( )

0
( )ϵ ϵ ω= − + − ≡ −

Thus, the energy absorbed from the bath equals the energy spacing 1 0ω ϵ ϵ= − times the change in the
population of the lowest energy state. (We denoted the ground and excited state populations as p0 and p1,
respectively.)

Since the change of the total internal energy along the cycle vanishes, the total work done on the system is
given byW Q Q( )tot h c= − + , whereQh (Qc) is the amount of energy exchangedwith the reservoir at inverse
temperature hβ ( cβ ), given by equation (7) for the isochores 2 3→ (4 1→ ). Thefirst quantity wewill use to
characterize the cycle is the extractable workW W Q Q( )ex tot h c= − = + given by the relation:

( )( ) ( )W p p p p , (8)ex 2 0
(2)

0
(3)

1 0
(4)

0
(1)ω ω= − + −

where ( )k
k k

1
( )

0
( )ω ϵ ϵ= − is the energy level spacing of theHamiltonian at point k = 1, 2 in theω-n diagramof

figure 4.
For theQOC, and bymeans of the definition of n, we can thenwrite the following condition

n n n n( ) ( ), (9)1 (1) (4) 2 (2) (3)ω ω− < −

ensuring that thework extracted is strictly positive, andwe are actually using the engine to perform thework.
This is in agreementwith theCarnot theorem, as shown in [15], and for ideal quantumadiabatic branches (i.e.,
infinitely slow transformations) it reduces to h c 1 2β β ω ω> , where 1,2ω are the energy spacings at the end of the
quantum adiabatic branches [23]. Notice that, in this quantumadiabatic limit, a breakdown of the positive work
condition coincides with the saturation of theCarnot inequality.

Let us nowdefine the power and the efficiency of a cycle on a single qubit as:

( ) W

t t

W
, ,

2
, (10)ad h c

ex

F B iso

ex

ad iso
 τ θ β β

τ τ τ
=

+ +
=

+
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( ) W

Q

Q

Q
, , 1 (11)ad h c

ex

h

c

h
η τ θ β β = = +

wherewe havemade explicit the dependence upon the angle θ in both  and η, andwe explicitly included isoτ in
the above definitions, despite the assumption that it is small compared to the characteristic timescale of the cycle,
just to avoid that  is ill-defined in the formal limit 0adτ → .

In addressing the disordered casewe average all quantities over θ, assuming it to have aGaussian distribution
G ( )θσ with zeromean and variance 2σ . The averaged extractable work, power, and efficiency are thus given by:

( ) ( )W G W, , ( ) , , d (12)ex ad h c ex ad h c
0

∫τ β β σ θ τ θ β β θ=
π

σ

( ) ( )G, , ( ) , , d (13)ad h c ad h c
0

 ∫τ β β σ θ τ θ β β θ=
π

σ

( ) ( )G, , ( ) , , d . (14)ad h c ad h c
0

∫η τ β β σ θ η τ θ β β θ=
π

σ

3. Results and discussion

In this sectionwe characterize theQOCby looking at the extractable workWex, its power  , and its efficiency η,
paying particular attention to the role of the inner friction in limiting the performances of such a heat engine. In
thefirst subsectionwewill look at thesefigures ofmerit for different sets of parameters of ourmodel-system. In
the second one, we study the behavior of the efficiency atmaximumpower, ( )MAXη .

3.1. Extractable work, power, and efficiency
Inwhat followswewill study the performance of theQOC in various cases of equal rates for both of the adiabatic
branches. Infigures 5(a), (c) and (e)we plotWex,  , and η, as functions of the total time of the cycle ttot for
different values of themisalignment angle θ at afixed value of the ratio between the temperatures of the hot and
cold reservoirs 0.5h cβ β = . It can be seen that the extractable work becomes negative if the ttot exceeds a
maximum time t ( )M θ , which is a function of themisalignment θ. Thismeans that if the cycle lasts too long, we
are actually doingwork on the system.Moreover there exists a critical value of θ such that the extractable work is
negative for any value of ttot. Under these conditions, the cycle is not a heat engine but rather a refrigerator, which
uses external work to cool the cold reservoir. An analogous behavior is shown by power and efficiency.

Infigures 5(b), (d) and (f), we show the dependence ofWex,  , and η on the total time of the cycle for afixed
misalignment angle 5θ π= and for different values of the ratio h cβ β .We can see that as the ratio increases, the
extractable work increases too. This is somethingwhich is expected; nevertheless, we can clearly see that the
finiteness in the time of the cycle introduces again negative works for t t ( )tot M h cβ β> . This is again due to the
generation of inner friction, which comes alongwith the finite-time condition.

Inner friction is explicitly shown infigure 6, where the sumof the friction produced in the two adiabatic
strokes is shown as a function of the total cycle time for variousmisalignment angles θ. As discussed above, the
case 0θ = is very special, as no friction is generated, whatever rate of variation is considered for the driving field

t( )λ . On the other hand,Wfric increases with increasing the tilting angle θ and decreases with decreasing the
driving rateα. The behavior ofWfric should be compared to that ofWex shown infigure 5: themore friction is
present, the less work can be extracted from the engine.

So farwe have consideredQOCswith given values of themisalignment angle θ.We now consider the effect
of disorder and assume that θ is aGaussian randomvariable withmean value 0θ = and variance 2σ . In
figures 7(a), (c), and (e)we show the behavior of extractable work, power, and efficiency for different values of
the variance and given temperature ratio ( 0.5)h cβ β = .We can see that at a given total time ttot, the best
performance is always obtainedwith sharper distributions (smaller σ). Thus, if the disorder of the system grows,
the capability of the latter of providingwork and of doing it in amore efficient way decreases. Againwemention
the fact that there exists amaximum total time tM abovewhich theQOC is not a heat engine anymore.We also
notice that even a small disorder has quite a dramatic effect in reducing the efficiency for long enough times
(upper curve infigure 7(e)).

Infigures 7(b), (d), and (f) we plotted the behavior of the same quantities for different values of the ratio

h cβ β at a given variance 0.12σ = . Again, all of the quantities increase as the difference in temperatures increases.
We plotted all of the quantities as a function of the total cycle time ttot because, from an operational point of

view, this is the quantity one can control once theworking substance is prepared and the stage is set for the
thermalmachine to operate. However, it has to bementioned that some care should be paidwhen comparing
the values of the efficiency at different operating times. Indeed, sinceω varies with time, each different ttot gives
rise to a different value of the final frequency (called 2ω , above) at which the isochoric 2→ 3 takes place; see
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figure 4. The ideal cycle with infinitely slow adiabatic branches, corresponding for us also to the absence of
misalignment ( 0θ = ) and shown for comparison in each plot infigures 5 and 6, has efficiency 1ideal

1

2
η = − ω

ω
.

The dependence of idealη on 2ω implies that the efficiency η should be comparedwith a different idealη at each
different ttot. To avoid any confusion in this respect, and to better display the role offinite-time induced friction
in themachine performance, we show this comparison infigure 8, where the ratio idealη η is displayed as a
function of the operating time.Once the efficiency is renormalized in this way, its residual dependence on ttot can
be fully ascribed to the presence of inner friction.

3.2. Efficiency atmaximumpower
Let us now consider the relation between η and  (seefigure 9) and then extract the value of the efficiency at
maximumpower ( )MAXη . Two sets of these data are reported in tables 1 and 2. They refer to averaged power

Figure 5.Extractable work, power, and efficiency as functions of ttotα . Infigures 5(a), (c), and (e)we fix the temperature ratio
0.5h cβ β = and vary themisalignment θ, starting from 0θ = for the highest (red) plot, then considering 5, 2θ π π= andfinally

θ π= for the lowest (yellow) curve. On the other side, in 5(b), (d), and (f) we fix themisalignment to 5θ π= and vary h cβ β , which,
again going from the top-most red plot down to the yellow curve, takes the values 0.01, 0.31, 0.51, 0.71h cβ β = .
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and efficiency considering in thefirst case various temperature ratios at afixedwidth, and the other way round
for the second case. The effects of disorder and temperature difference continue to stand: our analysis provides
larger values of (averaged) power and (averaged) efficiency atmaximumpower for smaller and smaller σ and for
larger and larger h cβ β , with the following one-sentence summary: we obtain considerably larger values of

( )MAXη when the temperature ratio is large and for very pickedmisalignmentG distributions, that is, when the
inner friction is smaller.

4. Experimental implementationwith an optical setup

In this sectionwe propose one possible experimental set-up bymeans of which it is possible to realize theOtto
cycle discussed so far and test ourfindings. TheOtto cycle ismade up of two different types of branches, namely,
adiabatic and isochoric transformation. Thus the proposed set-up has to be able to implement both of them.

The physical systemwe have inmind is an optical one, and, in particular, we propose to encode the qubit into
the polarization degree of freedomof a single photon. In the followingwe address the implementation of the two
types of branches separately, stressing the key points for both of them.

4.1. Implementation of the adiabatic transformation
The adiabatic branch in theOtto cycle is achieved bymeans of a time-dependent effectivemagnetic field, and its
time evolution is given by the unitary operator:

U t Tˆ ( ) e (15)d Bi ( )·
t

0
∫= τ τ σ− ⃗ ⃗

For afixed t t*= the above operator can bewritten as a rotation in theHilbert space of the qubit using the
Euler decomposition as:

U tˆ ( *) e e e . (16)i i iz x z
*

2
*

2
*

2= σ σ σ− − −ψ θ ϕ

This expression is helpful for our purposes, because the single rotations appearing in it can be easily implemented
in an optical setup as rotation of the polarization degrees of freedomof a single photon.

Therefore by encoding the qubit into the polarization degree of freedomof a photon and, in particular, by
choosing the basis H V{ , }∣ 〉 ∣ 〉 of horizontal and vertical polarization, we can perform thewanted rotations by
means of properly chosen phase retarders.

4.2. Implementation of the isochoric transformation
The isochoric transformation requiresmore care. By definition it amounts to attaching the system to a thermal
bath, whichmakes the system thermalize into aGibbs-like state. The latter is characterized by a densitymatrix ρ
with no coherences between different eigenstates of theHamiltonian of the system, whereas the diagonal ones
are given by the Boltzmann factors e (e e )n 0 1+βϵ βϵ βϵ− − − , where T1 cβ = or T1 hβ = is the inverse temperature
wewant the state to thermalize at, and nϵ are the eigenenergies of thefinalHamiltonian of the adiabatic
transformation preceding the isochoric onewe are addressing. In the case of a qubit, the thermalization process
leads to afinal state that is diagonal in a given basis (determined by the formof the bath-spin coupling) and
whose populations are related to the temperature of the thermal bath by the relation

Figure 6. Inner friction accumulated in the cycle as a function of the total operation time for differentmisalignments θ, at 0.5h cβ β = .
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T
p

p
p

1
log

1 1

2
1, (17)

f

f
f1

1 0

0
( )

0
( ) 0

( )β
ϵ ϵ

= = −
−

−
⩽ <−

where, p f
0
( ) is the population of the lowest n( 0)= state of the qubit after thermalization has occurred.

In order to implement an isochoric transformationwe propose to exploit the experimental setup used in
[24]. The idea is to exploit the spatial degrees of freedomof the photon as an effective bath for its polarization.
The coupling between the two is achieved by exploiting the birefringent property of a quartz plate. The effect of
the latter on a photon passing through it is to phase-shift the horizontal and vertical component of the
polarization by an amount proportional to the number of photons permode. Once the spatial part of the photon
is traced out, the dynamics of the polarization turns out to be driven by the following dynamicalmap between an
initial state iρ to afinal state fρ , which describes decoherence:

Figure 7.Averaged extractable work, power and efficiency as functions of ttotα . In figure 7(a), (c), and (e), we consider afixed value for
the temperature ( 0.5h cβ β = ) and vary σ. Different colors refer to different Gaussianwidths: the red plots correspond to 0.012σ = ,

The orange ones to 0.52σ = , light orange ones to 12σ = , and, finally, the (lowest) yellow curves refer to a flat distribution. In
figures 7(b), (d) and (f) we take 0.12σ = , and vary h cβ β , which, going from the red plots to the yellowones, takes the values

0.01, 0.31, 0.51, 0.71h cβ β = .
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( )z z
1

2
(1 ) (1 ) ˆ ˆ , (18)i f i z i zρ ρ ρ σ ρ σ→ = + + −

where the parameter z can be tuned from z=1 (identitymap) to z 1= − (complete decoherence; namely, the
final densitymatrix has vanishing off-diagonal terms). Because of our assumption of complete thermalization
wewill always assume z 1= − .

We can thus exploit thismechanism in order to engineer thermalization in the followingway. Let us assume
that the inverse temperature of the bathwewant tomimic is β. Through equation (17)we can determine the

Figure 8. Left: renormalized efficiency idealη η as a function of the total operation time for differentmisalignments
0, 10, 5, 2 5θ π π π= , at 0.5h cβ β = . Right: averaged efficiency η̄ normalizedwith respect to the ideal efficiency obtained at 0θ = .

The average is taken overGaussian distributions with variances, 0.12σ = , 12σ = , and over aflat distribution, respectively. For all of
the plots, wefixed the temperature ratio 0.5h cβ β = .

Figure 9.Relation between averaged power and efficiency, t( ) and t( )η , at the same time parameter ttotα . In 9(a) we choose
0.5h cβ β = and vary σ, which, from the outer to the inner curve takes the values 0.01, 0.05, 0.1, 0.5, 1, 102σ = . In 9(b) wefix

0.12σ = , and, starting from the outer to the inner curve, we consider the increasing temperature ratios
0.02, 0.03, 0.04, 0.05, 0.06, 0.07h cβ β = .

Table 1.Efficiency atmaximumpower at
0.5h cβ β = and for different values of theGaus-

sian bell’s width σ. The optimal total cycle time,
ttot

MAXα , is the one for which  attains its
maximum.

2σ ttot
MAXα MAX

2 α ( )MAXη

0.01 0.0882 0.0439 0.0775

0.05 0.0882 0.0429 0.0758

0.1 0.0882 0.0418 0.0737

0.5 0.0771 0.0334 0.0519

1 0.0340 0.0253 0.0340

10 0.0.220 0.0027 0.0220
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population of the lowest energy level after the system is completely thermalized. Let us write the initial state
(which in turn corresponds to thefinal state of the adiabatic transformation preceding the isochoric one) as:

p b b1
1

2

1

2
. (19)i

i
z x x y y0

( )⎜ ⎟⎛
⎝

⎞
⎠ρ σ σ σ= + − + +

Since the decoherencemapping in equation (18) has the effect ofmaking the off-diagonal elements vanish, we
first need to perform a rotation on the initial state iρ to turn it into a state of the form:

p b b1
1

2

1

2
(20)f

f
z x x y y0

( )⎜ ⎟⎛
⎝

⎞
⎠ρ σ σ σ′ = + − + ′ + ′

where p f
0
( ) is calculated through relation in equation (17). The application equation (18) has now the effect of

making b b 0x y′ = ′ = , thus leaving uswith the desired state:

p1
1

2

1

2
. (21)f

f
z0

( )⎜ ⎟⎛
⎝

⎞
⎠ρ σ= + −

It is easy to see that in order to get from the state in equation (19) to the one in equation (20)we can apply a
specific rotation, which has to be chosen by taking into account both states. For instance, in the case by = 0 and
p p 1 2f i

0
( )

0
( )< ⩽ , that is, if we are ‘heating’ our system, the right rotation to perform is:

( )R p p, e (22)x
f i

0
( )

0
( ) i x

x2= σ− θ

with ( )( )p pcos( ) 1 2 1 2x
f i

0
( )

0
( ) 1

θ = − −
−
. For b 0y ≠ wehave solutions for cos( )yθ only if

( )( )p p b1 2 1 2 1 2f i
y0

( )
0
( ) 2 2

1 2

− ⩽ − ⩽ − − + .

5. Conclusions

Wehaveworked out an exact dynamicalmodel withwhichwe discussed the performance of aQOC in the
presence of inner friction.With respect to previous approaches to the same problem,we obtained the growth of
polarization in the adiabatic branches of the cycle without any ad hoc assumption, but rather by following the
dynamics generated by the systemHamiltonian. In this waywe have been able to deal with the irreversibility of
such transformationswhen they are performed in afinite-time and so to better characterize thewhole cycle.
Finite-time evolution leads to a decrease of values of thermodynamical figures ofmerit for the heat engine, and
we have concentrated on the extractable work, the power, and efficiency, which are partially quenched if inner
friction is present.

The friction is related to the non-commutativity of the system and controlHamiltonian, due to some
misalignment between the internal and controlmagnetic field axes. After explicitly studying its effects for afixed
(and controlled) case, we turned to themore realistic case inwhich such amisalignment is an unwanted side
effect of the lack of control in the system, ultimately due to the presence of disorder in the sample or
inhomogeneity of themagnetic field. The limiting cases are the completely ordered and disordered samples; in
thefirst one, we obtain an ideal quantumOtto enginewith efficiency given by 1ideal 1 2η ω ω= − , while for the
completely disordered case we showed that no positive work can be extracted from the system, which cannot
behave as a heat engine at all. In themore general case of afinite-widthGaussian distribution of tilting angles θ,
describing a given degree of disorder as quantified by its variance, we obtained a quantitative description of the
efficiency reduction due to the disorder-induced inner friction.

Table 2.Efficiency atmaximumpower for
0.12σ = for different temperature ratios h cβ β .

Themaximumpower t( )MAX tot
MAX = is

obtained for the times ttot
MAXα reported in the

second column.

hβ ttot
MAXα MAX

2 α ( )MAXη

2.1 0.175 0.0761 0.1420

3.1 0.125 0.0635 0.1056

4.1 0.1 0.0517 0.0862

5.1 0.075 0.0406 0.0660

7.1 0.05 0.0208 0.0447

9.1 0.025 0.0045 0.0224
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Finally, we proposed an optical experimental implementation of such anOtto cycle using the effective
polarization qubit of a photon, whose thermalization can be obtained by the couplingwith the spatial degree of
freedom in a birefringent crystal.
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