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thisworkmustmaintain 1 N€ concept of inner friction, by which a quantum heat engine is unable to follow adiabatically its

Z:f}‘l’;g;‘;‘;‘é‘; iteor  Strokesand thus dissipates useful energy, is illustrated in an exact physical model where the working

the work journal ctaton substance consists of an ensemble of misaligned spins interacting with a magnetic field and performing
the Otto cycle. The effect of this static disorder under a finite-time cycle gives a new perspective of the

concept of inner friction under realistic settings. We investigate the efficiency and power of this engine
and relate its performance to the amount of friction from misalignment and to the temperature
difference between heat baths. Finally we propose an alternative experimental implementation of the

cycle where the spin is encoded in the degree of polarization of photons.

1. Introduction

The recent boosting interest in the study of the quantum counterpart of classical well-known heat engines such
as the Otto, Carnot, Stirling, and Szilard ones [ 1-8], has been motivated both by the need of a fundamental
understanding of the limits imposed by quantum mechanics on the thermodynamic performances of small
devices (in terms of both efficiency and power output) and by the growing experimental ability to control
various types of quantum systems with a high degree of accuracy. There have been, indeed, many proposals
aimed atimplementing thermodynamic transformations and cycles with many different quantum working
substances, ranging from trapped ions to magnetic materials [9], with the prospect of building quantum heat
engines, exploring the abilities and limitations of quantum machines in converting heat into work, and, on more
general ground, building a self-contained description of thermodynamics in the quantum regime. As a specific
example, an interesting proposal in this respect has been made for implementing a nanoheat engine with a single
trapped ion performing a quantum Otto cycle (QOC) [10]. Besides its specific applications, this is an important
example, as the QOC constitutes a useful test ground to study irreversibility in the quantum realm.

Indeed, the cycle consists of two isochoric thermalization branches (with a fixed system Hamiltonian) and
two isentropic branches, in which the system is detached from the thermal baths and its evolution is generated by
a parametric time-dependent Hamiltonian. Every practical realization of these latter transformations has to face
the general problem of understanding and describing the (unwanted) irreversible entropy production, which
can occur in non-ideal, finite-time quantum parametric processes. This general problem has been variously
analyzed through the use of fluctuation relations [11, 12] and has attracted a lot of attention in recent
years [13, 14].

In this paper, we explicitly address the study of the Otto cycle by focusing on the finite-time case and
discussing the implications of finite-time transformations as opposed to ideal, infinitely lasting ones. In this
respect, in a series of papers, Kosloff and Feldmann [15—17] introduced the concept of intrinsic/inner friction,
whereby the engine is never able to accomplish a frictionless adiabatic transformation and thus loses power. This
concept has been extended and applied to various contexts [12, 18, 19].

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Inner friction is a fully quantum phenomenon, whose consequences are similar to those of the mechanical
friction occurring when displacing a piston in compressing/expanding a gas in a classical thermodynamic
setting. Its origin, however, is completely different: when the external control Hamiltonian does not commute
with the internal one, the states of the working fluid cannot follow the instantaneous energy levels, leading to
additional energy stored in the working medium. Inner friction is thus associated to diabatic transitions, i.e.,
changes of populations which occur during the time-dependent adiabatic (here referring to a closed system)
strokes if they are performed at finite speed.

So far inner friction occurring in specific cycles and transformations has been analyzed by adopting
phenomenodlogical and physically motivated assumptions about the explicit time dependence of the
population changes (e.g., in [15], a friction coefficient is introduced, giving rise to a constant dissipated power).
Our treatment, instead, does not rely on any ad hoc assumption, but rather on the exact dynamics of the working
substance. This is important because it has been shown [12] that inner friction is not only an indicator of
irreversibility of a quantum process, but also a quantitative measure of its amount. It is therefore crucial to
identify and highlight its role in the efficiency reduction of finite-time cycles by analyzing the full quantum
dynamics that produces it.

In particular, we will explore the quantum friction arising from disorder within the sample playing the role
of aworking substance. We will consider an ensemble of qubits in a setting in which their Hamiltonian
parameters are not homogeneous and connect the presence of these static errors to the appearance of friction and
losses during the implementation of the Otto cycle. Explicitly, we provide a quantitative analysis of the amount
oflosses due to the inner friction as a function of the degree of disorder.

Indeed, the performance of the heat machine is negatively affected by inner friction, and the cycle’s outputs,
such as extracted work, power, and efficiency, are gradually suppressed as disorder and friction increase.

The remainder of the paper is organized as follows. In sections 2.1 and 2.2 we introduce and review the
concept of inner friction by focusing on the particular case of a spin system in the presence of misalignments and
disorder, which will then be of interest for the rest of the present paper. In section 2.3 we introduce the QOC and
its constituent transformations, specifying the assumptions about the model we use to describe the working
substance. In section 3 we present and discuss our main results, while in section 4 we propose a feasible
experimental implementation of the QOC in order to test our findings. Finally, section 5 is devoted to some
concluding remarks and to a discussion of possible future developments.

2.Model and methodology

In this section we introduce the model and give a possible explanation of the origin of inner friction. We then
introduce the QOC and the figures of merit through which the cycle will be characterized.

2.1.Misalignment and disordered samples
In order to understand what we mean by losses and friction in a closed quantum system, and in particular in the
case of one qubit, let us focus on the dynamics generated by a Hamiltonian of the form:

H(A(1) = %az+l(t)(cos 06, + sin 06,). (1)

The analysis reported here applies to the general case of qubit dynamics (1), and in the following we will consider
the case of a spin interacting with a magnetic field (sections 2 and 3) as well as of a qubit encoded in photon
polarization (optical implementation in section 4).

An adiabatic transformation is obtained by the unitary time evolution generated by the Hamiltonian (1),
with alinear driving of the external field at a fixed rate A (t) = awqt/2, which we allow to be misaligned by an
angle 6 with respect to the static field wg. The misalignment affects the energy spacing as well as the eigenstates
and the populations.

We assume that at =0 the qubit in a thermal state is at inverse temperature /5. For a very slow driving, ideally
taking an infinite-time to complete the transformation in the quantum adiabatic regime, the qubit populations
would remain unchanged while the the energy spacing increases/decreases, and the system remains in a thermal
state with a lower/higher temperature. The same occurs in the absence of misalignment, 8 = 0 in equation (1),
asin this simple scenario, where the adiabatic transformation

H=w()o, withw()= % + (1) )

reduces to a compression/expansion of the energy spacing of the qubit, thus preserving the initial thermal
populations even in the presence of fast driving.
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Figure 1. Misalignment effects of a sample of spins interacting with an external field due to (a) disorder within the sample or (b) lack of
uniformity of the magnetic field (e.g., because of the finite length of the coil).

Interesting dynamical and thermodynamical implications arise, instead, when considering deviations from
the limit of perfect alignment (6 # 0). This is the case that we are going to explore in this work in order to
characterize inner friction and its effects on the efficiency of quantum thermal machines, resulting from the
simultaneous presence of the static field @, and of the misaligned time-dependent part A (¢). Our aim it to apply
this analysis to an ensemble of (independent) spins, considering some degree of disorder and looking at average
effects across the sample. In particular, this can correspond to different situations, as represented in figure 1.

A condensed system on a lattice, with embedded magnetic dipoles having disordered orientations, can be
modelled by randomly oriented spins with tilting angles 6; (i = 1, 2, ...) with respect to the direction of a
uniform external field. We assume that the distribution of the spin orientations in the sample is given by a
function G (0). Alternatively, all sample dipoles could be perfectly aligned in an ordered configuration, but the
inner friction could be due to inhomogeneity of the external fields in space (figure 1(b)). The field orientation
across the sample would be given, in this case, again by the function G (9).

2.2.Inner friction and irreversibility
In order to have a simple physical picture for the behavior of our quantum machine, let us first consider the
simpler case of a driven quantum two-level system undergoing the unitary dynamics generated by a parametric,
time-dependent Hamiltonian H [A (¢)]. If the parameter A (¢) changes slowly enough (in the sense of the
quantum adiabatic theorem [20, 21]), the system evolves without its energy population ever changing at all, even
if the instantaneous energy eigenvalues and eigenstates do change in time. If the system has been prepared in
equilibrium with a thermal bath, which is then removed, such an ideal adiabatic parameter change keeps the
system in an equilibrium state at every stage. In particular, if the parameter A gets back to its initial value after
some time, the final result is that the system is brought back to its initial state. On the other hand, if the cycle is
performed in finite-time, the final state of the system will differ from the equilibrium state it started in, because a
non-adiabatic transition has taken place [22]. The difference between the two states, if properly quantified, can
be regarded as a measure of the deviation from an ideal adiabatic transformation. The quantum non-adiabaticity
has the same effects as friction has in a classical context: an extra energy is needed to complete the process
(indeed, the work done in the ideal adiabatic is always smaller than the one performed in finite-time; see
[12,21]), which is then dissipated if the system equilibrates at the end of the process.

With this picture in mind, let us now address the dynamics generated by Hamiltonian (1) on an initial
thermal state given by p, = exp{—fH (41(0))}/Tr[exp{—pH (1(0))} ], where $is the inverse temperature in

units of the Boltzmann constant. By changing A (¢) very slowly from 4 (0)att=0upto A(t;) = A*att = t;and
then going back from 1 to 1 (0), the system will be brought back into its initial state. To discuss what happens in
the general case, namely, when these changes are performed at finite rates, we consider the following protocols:

UF(O,I‘F)
Po— P

— 3
P2 UB(O,tB) P (3)

The forward protocol, defined by the unitary operator U (0, tp) = Te fo H{r(@)de (T being the time
ordering operator), is generated by the Hamiltonian in equation (1), such that Ag (t) = apwqgt/2. It takes the

. 2
initial density matrix p, to p, = Uz (0, tz)p, U} (0, t). The backward protocol Uy (0, t3) = Te™ ./0 H{ap(c))de
is again generated by the Hamiltonian in equation (1), where now Ag () = Ap(tp) — apwot/2 with the
condition that A5 (tg) = Ar(0). This consists just in ramping up and down the field A (¢) with different rates ar
and ap, respectively.
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Figure 2. The left panel shows the time dependence of the polarization n(t) for a finite-time adiabatic transformation (solid blue line)
compared with the case of an ideal quantum adiabatic one (dashed red line). We used ar = 10~4wy. In the right panel, we compare
the forward evolution (lower time axis from left to right) with the backward one (upper time axis from right to left) by displaying the
time-dependent polarization in both processes. The parameters used are aptr = aptp = 15and ar = ap = . Inboth figures
0 =n/5.

In order to characterize the above protocol, we firstlook at the time-dependent polarization, defined as
n(t) = Trlp (t)H (t) ]/w (t), where w (¢) is the energy level spacing at time ¢ for both the forward and backward
protocols. The result is shown in figure 2(a), where we notice that finite-time evolution introduces deviations
with respect to the quantum adiabatic case, as expected. Moreover, as it can be seen in figure 2(b), by applying
the forward and backward protocols defined above, the system does not get back to its initial state, but reaches a
different polarization (green line) at the end of the protocol. This already gives a quantitative indication that
finite-time control leads to an irreversible behavior. Here, we use the word ‘irreversibility’ in the thermodynamic
sense: because of the occurrence of non-adiabatic transitions, the system is driven out of the manifold of
equilibrium states, and application of the same protocol in reverse does not bring it back to the initial state.

A more precise way of quantifying the irreversibility of such a transformation is through the distance of the
final state from the initial one, expressed in terms of the relative entropy D (p, ||p, ), where

P, = Up(0, tg)p, Ug (0, t5). Asshown in [12], this quantity has a well-defined thermodynamical
interpretation, as it precisely gives the non-adiabatic part of the work performed on the system by the driving
agent, i.e., the inner friction.

Indeed, for an adiabatic transformation, the quantum relative entropy between the actual final state and the
ideal thermal equilibrium one is proportional to the difference between the work done on the system during the
parametric change and the same quantity taken in the infinitely slow limit. This is precisely the definition of the
inner friction, hereafter called Wy, [12]. Furthermore, the same quantity is linked to the generation of extra
heat, that is to say, to the irreversible production of ‘waste energy.’ This extra energy is exactly the energy that
needs to be dissipated if, at the end of the protocol, we were to thermalize the system to the initial temperature.
Specifically, the following relations hold:

~pQUpy = py) = PWsic = D (ps||po) @)

where Q (p, — p,) is the heat the system takes to thermalize at the initial inverse temperature 8. This is what we
shall refer to as inner friction in the following.

The inner friction for the time evolution described above is reported in figure 3, where we can clearly see that
when both transformations are either very slow (quantum adiabatic case) or very fast (‘diabatic’ or sudden case);
at the end of the protocol the system is found to be in (or very close to) its initial state. For finite-time
transformations, however, the system does not get back to its initial state. From a dynamical point of view, this is
not surprising; however, if interpreted from a thermodynamical perspective, this fact suggests that
transformations done in finite-time are, in general, irreversible ones.

2.3. Model for the quantum Otto cycle (time scale assumptions)

The Otto cycle is the simplest cycle for our purposes, as it allows for a clear separation between dissipative steps
(thermalization processes, in contact with a thermal bath) from non-dissipative ones (in which work is done or
extracted), as opposed, for instance, to the Carnot cycle, which contains two isotherms in which one has to
perform (extract) work while the system is attached to a thermal bath. This separation will be very useful in order
to identify finite-time effects on the single adiabatic transformations and thus on the total cycle.

4
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Figure 3. The quantum relative entropy between the state at the end of the backward step and the initial thermal state p,. Notice that
inner friction is very close to zero both for ap g3 — 0and app — oo. Theinverse temperature characterizing the initial state is taken to
be equal to the energy spacing wg. Here @ = n/5and aptp = agtg = 15.
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Figure 4. Representation of the Otto cycle in a parameter space in which the horizontal axis gives the instantaneous energy spacing
between the eigenstates of the Hamiltonian (1), while the vertical axis gives the polarization. The solid blue line is an example of a
finite-time Otto cycle with parameters: 6 = §> at = wot = 0.5513, # = w; ' and B, = A /2. The dashed yellow line corresponds to
an ideal (infinite-time) Otto cycle. The two red lines are the isotherms in this plane. They include the two (very fast) branches in which
the system equilibrates in contact with baths at inverse temperatures /4 and f, respectively.

The quantum version of the Otto cycle is the composition of two adiabatic transformations, in which the
systems evolves unitarily, and two isochoric branches corresponding to thermalization in contact with a hot
(and, respectively, a cold) heat bath at temperature ﬂh'l ( ﬂc_l )-

In the next subsections we better specify the assumptions we employ to describe the different branches of the
QOC and the physical quantities we investigate to characterize it. The ideal Otto cycle is represented by the
dashed (yellow) rectangle in figure 4. The blue line, instead, describes a finite-time cycle in which the endpoints
of the adiabatic strokes are moved towards larger values of # (which just means that there is more population
than expected in the excited states) because of the presence of inner friction.
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2.3.1. Adiabatic transformation

As already mentioned above, the adiabatic transformations can be described by the unitary operator generated
by the Hamiltonian in equation (1). For simplicity, in the following we will consider the case where the two
adiabatic branches (1 — 2and 3 — 4) lastequally long, namely, tr = t5 = 7,4, and have the same rate of
change for the field ap = ap.

2.3.2. Isochoric transformations

For the isochoric transformations, we assume perfect thermalization at the given temperatures /}h_l, [ic_l (hot
and cold, respectively). To study the relation between inner friction and the finite-time of the adiabatic branches,
we will assume that perfect thermalization is achieved very quickly with respect to all other time scales and also
that the isochoric branch will be assigned with a fixed short-time duration (to be eventually neglected) with

respect to adiabatic ones, but long with respect to thermalization time of the system:
Ttherm << Tiso <K Tad (5 )

where Tyerm» Tiso» and 7,4 are the typical time scales for the thermalization process, isochoric and adiabatic
transformations, respectively.

2.4. Figures of merit
In order to characterize the QOC, we will look at the extractable work, W,,, at the power P, at the efficiency 7,
and at their averages over disorder.

To properly define these quantities, let us start by defining the work done on an adiabatic branch as:

W= Tr[prf] - Tr[Hipi] (6)

where H; (Hy)and p; (p,)are the Hamiltonian and the density matrix of the system at the beginning (end) of
each transformation. In particular, both adiabatic transformations start with a Gibbs-like state, since we assume
perfect thermalization to occur at the end of each isochore. In the adiabatic transformations, the work defined in
equation (6) does coincide with the first moment of the work distribution for closed but non-autonomous
systems [25]. On the other hand, such a work distribution allows to define a fluctuation relation, and thus its
moments have a clear thermodynamical meaning.

In the isochoric branches, we have that the initial and final Hamiltonians are the same, and the final state p r
is thermal and thus diagonal in the energy eigenbasis. The amount of energy exchanged between the reservoir
and the system in each isochoric transformation is given by:

Qu=a(p! —p) +e(p ~ p) = w(pf ~ p)- (7)

Thus, the energy absorbed from the bath equals the energy spacing @ = €; — ¢, times the change in the
population of the lowest energy state. (We denoted the ground and excited state populations as py and p,
respectively.)

Since the change of the total internal energy along the cycle vanishes, the total work done on the system is
givenby W,; = —(Qp, + Q.), where Q;, (Q,) is the amount of energy exchanged with the reservoir at inverse
temperature /3, (4), given by equation (7) for the isochores 2 — 3 (4 — 1). The first quantity we will use to
characterize the cycle is the extractable work W, = —W,,, = (Q;, + Q. ) given by the relation:

Wee = (@222 = p7) + (8 = ")), (8)

where oy = (/0 — €{F)is the energy level spacing of the Hamiltonian at point k = 1, 2 in the w-n diagram of
figure 4.
For the QOC, and by means of the definition of 1, we can then write the following condition

o) (1) — hy) < o2 (ne) — neE)), 9)

ensuring that the work extracted is strictly positive, and we are actually using the engine to perform the work.
This is in agreement with the Carnot theorem, as shown in [15], and for ideal quantum adiabatic branches (i.e.,
infinitely slow transformations) it reduces to f3, /4 > @, /@, where w, ; are the energy spacings at the end of the
quantum adiabatic branches [23]. Notice that, in this quantum adiabatic limit, a breakdown of the positive work
condition coincides with the saturation of the Carnot inequality.

Let us now define the power and the efficiency of a cycle on a single qubit as:

Wex o W

= , (10)
Ir + 1 + Tis ZTad + Tiso

P (taas 0, By /B) =
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+ Q&
Qyp

=1

)= Wex (11)

n (Tad’ 9) ﬂh/ﬂc

where we have made explicit the dependence upon the angle 8 in both 7 and , and we explicitly included 7, in
the above definitions, despite the assumption that it is small compared to the characteristic timescale of the cycle,
justto avoid that P is ill-defined in the formal limit z,; — 0.

In addressing the disordered case we average all quantities over 0, assuming it to have a Gaussian distribution
G, (0) with zero mean and variance 2. The averaged extractable work, power, and efficiency are thus given by:

W (2 Bl 0) = [ GalO) W (50 0. By ) d0 (12)
P(2uts B3/ o) = [ Go(OP (50 0. ,/.) 20 (13)
T(5uis BiBo 0) = [ Go O (a 0, 51/8.) 0. (14)

3. Results and discussion

In this section we characterize the QOC by looking at the extractable work W,,, its power P, and its efficiency 7,
paying particular attention to the role of the inner friction in limiting the performances of such a heat engine. In
the first subsection we will look at these figures of merit for different sets of parameters of our model-system. In
the second one, we study the behavior of the efficiency at maximum power, 1 (Pyax )-

3.1. Extractable work, power, and efficiency

In what follows we will study the performance of the QOC in various cases of equal rates for both of the adiabatic
branches. In figures 5(a), (c) and (e) we plot W,,, P, and ;, as functions of the total time of the cycle t,,, for
different values of the misalignment angle & at a fixed value of the ratio between the temperatures of the hot and
cold reservoirs 3, /4 = 0.5.1t can be seen that the extractable work becomes negative if the t,,, exceeds a
maximum time #y; (6), which is a function of the misalignment 6. This means that if the cycle lasts too long, we
are actually doing work on the system. Moreover there exists a critical value of f such that the extractable work is
negative for any value of t,,,. Under these conditions, the cycle is not a heat engine but rather a refrigerator, which
uses external work to cool the cold reservoir. An analogous behavior is shown by power and efficiency.

In figures 5(b), (d) and (f), we show the dependence of W,,, P, and 7 on the total time of the cycle for a fixed
misalignment angle @ = 7/5 and for different values of the ratio f3, /. We can see that as the ratio increases, the
extractable work increases too. This is something which is expected; nevertheless, we can clearly see that the
finiteness in the time of the cycle introduces again negative works for t,,, > ta (3, /4 ). This is again due to the
generation of inner friction, which comes along with the finite-time condition.

Inner friction is explicitly shown in figure 6, where the sum of the friction produced in the two adiabatic
strokes is shown as a function of the total cycle time for various misalignment angles . As discussed above, the
case @ = 0 is very special, as no friction is generated, whatever rate of variation is considered for the driving field
A(t). On the other hand, Wy, increases with increasing the tilting angle  and decreases with decreasing the
driving rate a. The behavior of Wj;. should be compared to that of W, shown in figure 5: the more friction is
present, the less work can be extracted from the engine.

So far we have considered QOCs with given values of the misalignment angle 0. We now consider the effect
of disorder and assume that @ is a Gaussian random variable with mean value § = 0 and variance 2. In
figures 7(a), (c), and (e) we show the behavior of extractable work, power, and efficiency for different values of
the variance and given temperature ratio (3, /4 = 0.5). We can see that at a given total time t,,,, the best
performance is always obtained with sharper distributions (smaller o). Thus, if the disorder of the system grows,
the capability of the latter of providing work and of doing it in a more efficient way decreases. Again we mention
the fact that there exists a maximum total time ), above which the QOC is not a heat engine anymore. We also
notice that even a small disorder has quite a dramatic effect in reducing the efficiency for long enough times
(upper curve in figure 7(e)).

In figures 7(b), (d), and (f) we plotted the behavior of the same quantities for different values of the ratio
f,,//4 atagiven variance 6 = 0.1. Again, all of the quantities increase as the difference in temperatures increases.

We plotted all of the quantities as a function of the total cycle time #,,; because, from an operational point of
view, this is the quantity one can control once the working substance is prepared and the stage is set for the
thermal machine to operate. However, it has to be mentioned that some care should be paid when comparing
the values of the efficiency at different operating times. Indeed, since w varies with time, each different t,,, gives
rise to a different value of the final frequency (called @,, above) at which the isochoric 2 — 3 takes place; see

7
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Figure 5. Extractable work, power, and efficiency as functions of at,. In figures 5(a), (c), and (e) we fix the temperature ratio

By/B = 0.5 and vary the misalignment 6), starting from 6 = 0 for the highest (red) plot, then considering & = #/5, z/2 and finally

0 = n for the lowest (yellow) curve. On the other side, in 5(b), (d), and (f) we fix the misalignment to # = z/5 and vary f,, /, which,
again going from the top-most red plot down to the yellow curve, takes the values $, /4 = 0.01, 0.31, 0.51, 0.71.

figure 4. The ideal cycle with infinitely slow adiabatic branches, corresponding for us also to the absence of

misalignment (¢ = 0) and shown for comparison in each plotin figures 5 and 6, has efficiency 7,4,y = 1 — —.
2

The dependence of #,;,,; on w, implies that the efficiency n should be compared with a different ,,,,, at each
different t,,,. To avoid any confusion in this respect, and to better display the role of finite-time induced friction
in the machine performance, we show this comparison in figure 8, where the ratio 11,4, is displayed as a
function of the operating time. Once the efficiency is renormalized in this way, its residual dependence on t,,, can
be fully ascribed to the presence of inner friction.

3.2. Efficiency at maximum power
Let us now consider the relation between 77 and P (see figure 9) and then extract the value of the efficiency at
maximum power 7 (Pyax ). Two sets of these data are reported in tables 1 and 2. They refer to averaged power
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Figure 6. Inner friction accumulated in the cycle as a function of the total operation time for different misalignments 6, at 8, /4 = 0.5.

and efficiency considering in the first case various temperature ratios at a fixed width, and the other way round
for the second case. The effects of disorder and temperature difference continue to stand: our analysis provides
larger values of (averaged) power and (averaged) efficiency at maximum power for smaller and smaller ¢ and for
larger and larger f3, /3, with the following one-sentence summary: we obtain considerably larger values of

1 (Pyax ) when the temperature ratio is large and for very picked misalignment G distributions, that is, when the
inner friction is smaller.

4. Experimental implementation with an optical setup

In this section we propose one possible experimental set-up by means of which it is possible to realize the Otto
cycle discussed so far and test our findings. The Otto cycle is made up of two different types of branches, namely,
adiabatic and isochoric transformation. Thus the proposed set-up has to be able to implement both of them.

The physical system we have in mind is an optical one, and, in particular, we propose to encode the qubit into
the polarization degree of freedom of a single photon. In the following we address the implementation of the two
types of branches separately, stressing the key points for both of them.

4.1. Implementation of the adiabatic transformation
The adiabatic branch in the Otto cycle is achieved by means of a time-dependent effective magnetic field, and its
time evolution is given by the unitary operator:

O@) = Te [, & 07 (15)

For afixed t = t* the above operator can be written as a rotation in the Hilbert space of the qubit using the
Euler decomposition as:

Ut = eI o:emiforeitor (16)
This expression is helpful for our purposes, because the single rotations appearing in it can be easily implemented
in an optical setup as rotation of the polarization degrees of freedom of a single photon.
Therefore by encoding the qubit into the polarization degree of freedom of a photon and, in particular, by
choosing the basis {|H), | V') } of horizontal and vertical polarization, we can perform the wanted rotations by
means of properly chosen phase retarders.

4.2. Implementation of the isochoric transformation

The isochoric transformation requires more care. By definition it amounts to attaching the system to a thermal
bath, which makes the system thermalize into a Gibbs-like state. The latter is characterized by a density matrix p
with no coherences between different eigenstates of the Hamiltonian of the system, whereas the diagonal ones
are given by the Boltzmann factors e #¢1/(e ¢ + e=#4), where f = 1/T, or # = 1/T;, is the inverse temperature
we want the state to thermalize at, and ¢, are the eigenenergies of the final Hamiltonian of the adiabatic
transformation preceding the isochoric one we are addressing. In the case of a qubit, the thermalization process
leads to a final state that is diagonal in a given basis (determined by the form of the bath-spin coupling) and
whose populations are related to the temperature of the thermal bath by the relation
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Figure 7. Averaged extractable work, power and efficiency as functions of at,,. In figure 7(a), (c), and (e), we consider a fixed value for
the temperature (8, /4 = 0.5) and vary o. Different colors refer to different Gaussian widths: the red plots correspond to 62 = 0.01,
The orange ones to 6 = 0.5, light orange ones to 6% = 1,and, finally, the (lowest) yellow curves refer to a flat distribution. In
figures 7(b), (d) and (f) we take 6% = 0.1,and vary /4, which, going from the red plots to the yellow ones, takes the values
By/B = 0.01, 031, 0.51, 0.71.

1
— < (f)<1’ 17
€1 — €p 8 péf) 2 \po ( )

where, pom is the population of the lowest (n = 0) state of the qubit after thermalization has occurred.

In order to implement an isochoric transformation we propose to exploit the experimental setup used in
[24]. The idea is to exploit the spatial degrees of freedom of the photon as an effective bath for its polarization.
The coupling between the two is achieved by exploiting the birefringent property of a quartz plate. The effect of
the latter on a photon passing through it is to phase-shift the horizontal and vertical component of the
polarization by an amount proportional to the number of photons per mode. Once the spatial part of the photon
is traced out, the dynamics of the polarization turns out to be driven by the following dynamical map between an
initial state p, to a final state p I which describes decoherence:

10



I0OP Publishing NewJ. Phys. 17 (2015) 075007 A Alecceetal

1 1 1
\ o N
0 b
£ £ 2t
£ -1 <
c = -3}
P -4
-5¢F
-3 -6
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
atror atror

Figure 8. Left: renormalized efficiency 11,4, as a function of the total operation time for different misalignments
0 =0, n/10, z/5, 2z/5,at B,/ = 0.5.Right: averaged efficiency 7 normalized with respect to the ideal efficiency obtained at § = 0.

The average is taken over Gaussian distributions with variances, 62 = 0.1, 6% = 1, and over a flat distribution, respectively. For all of
the plots, we fixed the temperature ratio 3,/ = 0.5.
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Figure 9. Relation between averaged power and efficiency, P (¢) and 77 (), at the same time parameter aty,. In 9(a) we choose
Bn/B = 0.5 and vary 6, which, from the outer to the inner curve takes the values 6% = 0.01, 0.05, 0.1, 0.5, 1, 10.In 9(b) we fix

62 = 0.1,and, starting from the outer to the inner curve, we consider the increasing temperature ratios
Bi/B = 0.02, 0.03, 0.04, 0.05, 0.06, 0.07.

Table 1. Efficiency at maximum power at

B/ = 0.5 and for different values of the Gaus-
sian bell’s width . The optimal total cycle time,
at XX is the one for which P attains its

maximum.
o’ ato Puax/a’ 77 (Puax )
0.01 0.0882 0.0439 0.0775
0.05 0.0882 0.0429 0.0758
0.1 0.0882 0.0418 0.0737
0.5 0.0771 0.0334 0.0519
1 0.0340 0.0253 0.0340
10 0.0.220 0.0027 0.0220
1 N N
pi=pp =5 (420 + (=26 p;82), (18)
where the parameter z can be tuned from z=1 (identity map) to z = —1 (complete decoherence; namely, the
final density matrix has vanishing off-diagonal terms). Because of our assumption of complete thermalization

we will always assume z = —1.

We can thus exploit this mechanism in order to engineer thermalization in the following way. Let us assume
that the inverse temperature of the bath we want to mimic is . Through equation (17) we can determine the

11



10P Publishing

NewJ. Phys. 17 (2015) 075007 A Alecceetal

Table 2. Efficiency at maximum power for
6% = 0.1 for different temperature ratios /3, /f3.
The maximum power Pyax = P (tMA% )is

obtained for the times at X reported in the

second column.

By at X Puaxla? T (Puax)
2.1 0.175 0.0761 0.1420
3.1 0.125 0.0635 0.1056
4.1 0.1 0.0517 0.0862
5.1 0.075 0.0406 0.0660
7.1 0.05 0.0208 0.0447
9.1 0.025 0.0045 0.0224

population of the lowest energy level after the system is completely thermalized. Let us write the initial state
(which in turn corresponds to the final state of the adiabatic transformation preceding the isochoric one) as:
— l 1 l —_ W b b
pi_z + > Do 0; + 0y 0x + Uy Oy. (19)

Since the decoherence mapping in equation (18) has the effect of making the off-diagonal elements vanish, we
first need to perform a rotation on the initial state p; to turn itinto a state of the form:

! 1 1 ! ’
pf=51+(5—p0(f))az+bx o+ by o, (20)
where po(f) is calculated through relation in equation (17). The application equation (18) has now the effect of
making b, = by, = 0, thusleaving us with the desired state:

1 1
pp= E1 + (E - pom)oz. (21)

It is easy to see that in order to get from the state in equation (19) to the one in equation (20) we can apply a
specific rotation, which has to be chosen by taking into account both states. For instance, in the case b, = 0 and
pom < p(f’) <1 / 2, that is, if we are ‘heating’ our system, the right rotation to perform is:

Re(p®, p?) = e7ies (22)

with cos(6,) = (1 -2 poﬁf) ) (1 -2 po(i) )_1. For by, # 0 we have solutions for cos (6, ) onlyif
_ 172
—1/2<12-pP < —( (172 - pgl))2 + bj)

5. Conclusions

We have worked out an exact dynamical model with which we discussed the performance ofa QOCin the
presence of inner friction. With respect to previous approaches to the same problem, we obtained the growth of
polarization in the adiabatic branches of the cycle without any ad hoc assumption, but rather by following the
dynamics generated by the system Hamiltonian. In this way we have been able to deal with the irreversibility of
such transformations when they are performed in a finite-time and so to better characterize the whole cycle.
Finite-time evolution leads to a decrease of values of thermodynamical figures of merit for the heat engine, and
we have concentrated on the extractable work, the power, and efficiency, which are partially quenched if inner
friction is present.

The friction is related to the non-commutativity of the system and control Hamiltonian, due to some
misalignment between the internal and control magnetic field axes. After explicitly studying its effects for a fixed
(and controlled) case, we turned to the more realistic case in which such a misalignment is an unwanted side
effect of the lack of control in the system, ultimately due to the presence of disorder in the sample or
inhomogeneity of the magnetic field. The limiting cases are the completely ordered and disordered samples; in
the first one, we obtain an ideal quantum Otto engine with efficiency given by 7;;,,; = 1 — @,/w,, while for the
completely disordered case we showed that no positive work can be extracted from the system, which cannot
behave as a heat engine at all. In the more general case of a finite-width Gaussian distribution of tilting angles 6,
describing a given degree of disorder as quantified by its variance, we obtained a quantitative description of the
efficiency reduction due to the disorder-induced inner friction.
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Finally, we proposed an optical experimental implementation of such an Otto cycle using the effective
polarization qubit of a photon, whose thermalization can be obtained by the coupling with the spatial degree of
freedom in a birefringent crystal.
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