46 research outputs found

    Cardiovascular development: towards biomedical applicability: Epicardium-derived cells in cardiogenesis and cardiac regeneration

    Get PDF
    During cardiogenesis, the epicardium grows from the proepicardial organ to form the outermost layer of the early heart. Part of the epicardium undergoes epithelial-mesenchymal transformation, and migrates into the myocardium. These epicardium- derived cells differentiate into interstitial fibroblasts, coronary smooth muscle cells, and perivascular fibroblasts. Moreover, epicardium-derived cells are important regulators of formation of the compact myocardium, the coronary vasculature, and the Purkinje fiber network, thus being essential for proper cardiac development. The fibrous structures of the heart such as the fibrous heart skeleton and the semilunar and atrioventricular valves also depend on a contribution of these cells during development. We hypothesise that the essential properties of epicardium-derived cells can be recapitulated in adult diseased myocardium. These cells can therefore be considered as a novel source of adult stem cells useful in clinical cardiac regeneration therapy

    Evidence for Epithelial-Mesenchymal Transition in Cancer Stem Cells of Head and Neck Squamous Cell Carcinoma

    Get PDF
    Initiation, growth, recurrence, and metastasis of head and neck squamous cell carcinomas (HNSCC) have been related to the behavior of cancer stem cells (CSC) that can be identified by their aldehyde-dehydrogenase-isoform-1 (ALDH1) activity. We quantified and enriched ALDH1+ cells within HNSCC cell lines and subsequently characterized their phenotypical and functional properties like invasion capacity and epithelial-mesenchymal transition (EMT). Spheroid culture enriched CSC from five HNSCC cell lines by up to 5-fold. In spheroid-derived cells (SDC) and the parental monolayer-derived cell line ALDH1, CD44, CD24, E-Cadherin, α-SMA, and Vimentin expression was compared by flow-cytometry and immunofluorescence together with proliferation and cell cycle analysis. Invasion activity was evaluated by Matrigel assay and expression of stemness-related transcription factors (TF) Nanog, Oct3/4, Sox2 and EMT-related genes Snail1 and 2, and Twist by real-time PCR. All cell lines formed spheroids that could self-renew and be serially re-passaged. ALDH1 expression was significantly higher in SDC. ALDH1+ cells showed increased colony-formation. The proportion of cells with a putative CSC marker constellation of CD44+/CD24− was highly variable (0.5% to 96%) in monolayer and spheroid cultures and overlapped in 0%–33% with the CD44+/CD24−/ALDH1+ cell subset. SDC had significantly higher invading activity. mRNA of the stemness-related genes Sox2, Nanog, and Oct3/4 was significantly increased in SDC of all cell lines. Twist was significantly increased in two while Snail2 showed a significant increase in one and a significant decrease in SDC of two cell lines. SDC had a higher G0 phase proportion, showed high-level expression of α-SMA and Vimentin, but significantly decreased E-Cadherin expression. HNSCC-lines harbor potential CSC, characterized by ALDH1 and stemness marker TF expression as well as properties like invasiveness, quiescence, and EMT. CSC can be enriched by anchorage-independent culture techniques, which may be important for the investigation of their contribution to therapy resistance, tumor recurrence and metastasis

    Metabolism of halophilic archaea

    Get PDF
    In spite of their common hypersaline environment, halophilic archaea are surprisingly different in their nutritional demands and metabolic pathways. The metabolic diversity of halophilic archaea was investigated at the genomic level through systematic metabolic reconstruction and comparative analysis of four completely sequenced species: Halobacterium salinarum, Haloarcula marismortui, Haloquadratum walsbyi, and the haloalkaliphile Natronomonas pharaonis. The comparative study reveals different sets of enzyme genes amongst halophilic archaea, e.g. in glycerol degradation, pentose metabolism, and folate synthesis. The carefully assessed metabolic data represent a reliable resource for future system biology approaches as it also links to current experimental data on (halo)archaea from the literature

    Precision gestational diabetes treatment: a systematic review and meta-analyses

    Get PDF

    Genotype-stratified treatment for monogenic insulin resistance: a systematic review

    Get PDF

    Antimicrobials: a global alliance for optimizing their rational use in intra-abdominal infections (AGORA)

    Full text link

    Dissecting the role of micro-RNA200B in epicardial-derived cell diversification and migration

    No full text
    Mostramos como miR200B se expresa en los estadios E12.5 y E15.5 durante el desarrollo cardiaco, en concreto en una subpoblación de células derivadas del epicardio. Experimentos de pérdida y ganancia de función muestran que este microRNA regula la motilidad celular. miR200b podría ser una molécula clave en la regulación de la diversificación del linaje epicárdico y su migración durante la morfogénesis cardiaca.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Machine Learning Improves Risk Stratification in Myelodysplastic Neoplasms : An Analysis of the Spanish Group of Myelodysplastic Syndromes

    Get PDF
    Myelodysplastic neoplasms (MDS) are a heterogeneous group of hematological stem cell disorders characterized by dysplasia, cytopenias, and increased risk of acute leukemia. As prognosis differs widely between patients, and treatment options vary from observation to allogeneic stem cell transplantation, accurate and precise disease risk prognostication is critical for decision making. With this aim, we retrieved registry data from MDS patients from 90 Spanish institutions. A total of 7202 patients were included, which were divided into a training (80%) and a test (20%) set. A machine learning technique (random survival forests) was used to model overall survival (OS) and leukemia-free survival (LFS). The optimal model was based on 8 variables (age, gender, hemoglobin, leukocyte count, platelet count, neutrophil percentage, bone marrow blast, and cytogenetic risk group). This model achieved high accuracy in predicting OS (c-indexes; 0.759 and 0.776) and LFS (c-indexes; 0.812 and 0.845). Importantly, the model was superior to the revised International Prognostic Scoring System (IPSS-R) and the age-adjusted IPSS-R. This difference persisted in different age ranges and in all evaluated disease subgroups. Finally, we validated our results in an external cohort, confirming the superiority of the Artificial Intelligence Prognostic Scoring System for MDS (AIPSS-MDS) over the IPSS-R, and achieving a similar performance as the molecular IPSS. In conclusion, the AIPSS-MDS score is a new prognostic model based exclusively on traditional clinical, hematological, and cytogenetic variables. AIPSS-MDS has a high prognostic accuracy in predicting survival in MDS patients, outperforming other well-established risk-scoring systems

    Epicardially derived fibroblasts preferentially contribute to the parietal leaflets of the atrioventricular valves in the murine heart

    Get PDF
    The importance of the epicardium for myocardial and valvuloseptal development has been well established; perturbation of epicardial development results in cardiac abnormalities, including thinning of the ventricular myocardial wall and malformations of the atrioventricular valvuloseptal complex. To determine the spatiotemporal contribution of epicardially derived cells to the developing fibroblast population in the heart, we have used a mWt1/IRES/GFP-Cre mouse to trace the fate of EPDCs from embryonic day (ED)10 until birth. EPDCs begin to populate the compact ventricular myocardium around ED12. The migration of epicardially derived fibroblasts toward the interface between compact and trabecular myocardium is completed around ED14. Remarkably, epicardially derived fibroblasts do not migrate into the trabecular myocardium until after ED17. Migration of EPDCs into the atrioventricular cushion mesenchyme commences around ED12. As development progresses, the number of EPDCs increases significantly, specifically in the leaflets which derive from the lateral atrioventricular cushions. In these developing leaflets the epicardially derived fibroblasts eventually largely replace the endocardially derived cells. Importantly, the contribution of EPDCs to the leaflets derived from the major AV cushions is very limited. The differential contribution of EPDCs to the various leaflets of the atrioventricular valves provides a new paradigm in valve development and could lead to new insights into the pathogenesis of abnormalities that preferentially affect individual components of this region of the heart. The notion that there is a significant difference in the contribution of epicardially and endocardially derived cells to the individual leaflets of the atrioventricular valves has also important pragmatic consequences for the use of endocardial and epicardial cre-mouse models in studies of heart development. (C) 2012 Elsevier Inc. All rights reserve
    corecore