133 research outputs found

    Glycoconjugates in Sheep Buccal Glands Investigated by Conventional and Lectin Histochemistry

    Get PDF
    Sheep buccal glands consist of mucous acini capped by demilunes. Information on the chemical structure of their secretory glycoconjugates were obtained by means of a battery of peroxidase conjugated lectins with affinity for specific terminal and / or internal sugars. Neuraminidase procedures followed by lectin staining were also used to visualize the carbohydrate sequence. Stored secretions in mucous acinar cells contained glycoconjugates with N-acetylglucosamine and sialic acid linked to αN-acetylgalactosamine and galactosyl (ÎČ1→3) N-acetylgalactosamine. Demilunar cells displayed fucose, mannose, N-acetylglucosamine and a, N- acetylgalactosamine residues. Cells lining duct system showed a very strong staining at the apical surface and in the cytoplasm with UEA I, LTA and Con

    Expression of mesenchymal stem cell marker CD90 on dermal sheath cells of the anagen hair follicle in canine species

    Get PDF
    The dermal sheath (DS) of the hair follicle is comprised by fibroblast-like cells and extends along the follicular epithelium, from the bulb up to the infundibulum. From this structure, cells with stem characteristics were isolated: they have a mesenchymal origin and express CD90 protein, a typical marker of mesenchymal stem cells. It is not yet really clear in which region of hair follicle these cells are located but some experimental evidence suggests that dermal stem cells are localized prevalently in the lower part of the anagen hair follicle

    Geological map, balanced and restored cross-sections, and 3D geological model of the Monte Fema area, Umbria-Marche Apennines (Italy)

    Get PDF
    The Mt. Fema area is located within the 1:50,000 scale Sheet 325-Visso of the CARG project, in the Umbria-Marche Apennines. Here, inherited pre-orogenic deformation and multi-layered mechanical stratigraphy affect mountain belt evolution and cause along-and across-strike changes in structural architecture. Further complexity is caused by post-orogenic extensional tectonics dissecting the fold and thrust belt. In this work, we combined classical field methodologies with digital mapping and drone surveys to produce a 1:10,000 geological map of the Mt. Fema area. The resulting map was integrated with a 10 m-cell size DEM in a 3D environment to construct four balanced cross-sections that were used to document structural style and stratigraphic variations. One section was restored to quantify the amount of deformation related to both Neogene orogenic shortening and multiple extensional phases affecting the area. Ultimately, we built a 3D geological model to investigate the subsurface geometrical arrangement of strata and faults of different generations, thus the overall structural architecture of the fold and thrust belt. According to our interpretation, the Mt. Fema thrust system is characterised by relatively limited displacement (cumulative dip separation ranging from-100 m to the north in Val di Tazza to-500 m to the south in Valnerina). Reactivation of inherited normal faults was likely precluded because of their unfavourable orientation with respect to W-dipping thrusts. Inherited basin structure and mechanical stratigraphy govern folding by buckling mechanism, which in turn controls the locus of thrust propagation. Normal faults dissect the crestal region of the Mt. Fema anticline. These structures do not show evidence of surface faulting during recent seismic sequences, although earthquake epicentres fall within the study area. Our work provides new insights into the 3D structural architecture, timing, and kinematics of a key sector of the Umbria-Marche Apennines, with implications for a better understanding of the role of structural inheritance and subsequent extensional tectonics in the evolution of fold and thrust belts

    Cultivation area affects the presence of fungal communities and secondary metabolites in Italian durum wheat grains

    Get PDF
    In this study, durum wheat kernels harvested in three climatically different Italian cultivation areas (Emilia Romagna, Umbria and Sardinia) in 2015, were analyzed with a combination of different isolation methods to determine their fungal communities, with a focus on Fusarium head blight (FHB) complex composition, and to detect fungal secondary metabolites in the grains. The genus Alternaria was the main component of durum wheat mycobiota in all investigated regions, with the Central Italian cultivation area showing the highest incidence of this fungal genus and of its secondary metabolites. Fusarium was the second most prevalent genus of the fungal community in all cultivation environments, even if regional differences in species composition were detected. In particular, Northern areas showed the highest Fusarium incidence, followed by Central and then Southern cultivation areas. Focusing on the FHB complex, a predominance of Fusarium poae, in particular in Northern and Central cultivation areas, was found. Fusarium graminearum, in the analyzed year, was mainly detected in Emilia Romagna. Because of the highest Fusarium incidence, durum wheat harvested in the Northern cultivation area showed the highest presence of Fusarium secondary metabolites. These results show that durum wheat cultivated in Northern Italy may be subject to a higher FHB infection risk and to Fusarium mycotoxins accumulation

    The botanical drug PBI-05204, a supercritical CO2 extract of Nerium oleander, sensitizes alveolar and embryonal rhabdomyosarcoma to radiotherapy in vitro and in vivo

    Get PDF
    Treatment of rhabdomyosarcoma (RMS), the most common a soft tissue sarcoma in childhood, provides intensive multimodal therapy, with radiotherapy (RT) playing a critical role for local tumor control. However, since RMS efficiently activates mechanisms of resistance to therapies, despite improvements, the prognosis remains still largely unsatisfactory, mainly in RMS expressing chimeric oncoproteins PAX3/PAX7-FOXO1, and fusion-positive (FP)-RMS. Cardiac glycosides (CGs), plant-derived steroid-like compounds with a selective inhibitory activity of the Na+/K+-ATPase pump (NKA), have shown antitumor and radio-sensitizing properties. Herein, the therapeutic properties of PBI-05204, an extract from Nerium oleander containing the CG oleandrin already studied in phase I and II clinical trials for cancer patients, were investigated, in vitro and in vivo, against FN- and FP-RMS cancer models. PBI-05204 induced growth arrest in a concentration dependent manner, with FP-RMS being more sensitive than FN-RMS, by differently regulating cell cycle regulators and commonly upregulating cell cycle inhibitors p21Waf1/Cip1 and p27Cip1/Kip1. Furthermore, PBI-05204 concomitantly induced cell death on both RMS types and senescence in FN-RMS. Notably, PBI-05204 counteracted in vitro migration and invasion abilities and suppressed the formation of spheroids enriched in CD133+ cancer stem cells (CSCs). PBI-05204 sensitized both cell types to RT by improving the ability of RT to induce G2 growth arrest and counteracting the RT-induced activation of both Non‐Homologous End‐Joining and homologous recombination DSBs repair pathways. Finally, the antitumor and radio-sensitizing proprieties of PBI-05204 were confirmed in vivo. Notably, both in vitro and in vivo evidence confirmed the higher sensitivity to PBI-05204 of FP-RMS. Thus, PBI-05204 represents a valid radio-sensitizing agent for the treatment of RMS, including the intrinsically radio-resistant FP-RMS

    Protein synthesis levels are increased in a subset of individuals with fragile X syndrome.

    Get PDF
    Fragile X syndrome (FXS) is a monogenic form of intellectual disability and autism spectrum disorder caused by the absence of the fragile X mental retardation protein (FMRP). In biological models for the disease, this leads to upregulated mRNA translation and as a consequence, deficits in synaptic architecture and plasticity. Preclinical studies revealed that pharmacological interventions restore those deficits, which are thought to mediate the FXS cognitive and behavioral symptoms. Here, we characterized the de novo rate of protein synthesis in patients with FXS and their relationship with clinical severity. We measured the rate of protein synthesis in fibroblasts derived from 32 individuals with FXS and from 17 controls as well as in fibroblasts and primary neurons of 27 Fmr1 KO mice and 20 controls. Here, we show that levels of protein synthesis are increased in fibroblasts of individuals with FXS and Fmr1 KO mice. However, this cellular phenotype displays a broad distribution and a proportion of fragile X individuals and Fmr1 KO mice do not show increased levels of protein synthesis, having measures in the normal range. Because the same Fmr1 KO animal measures in fibroblasts predict those in neurons we suggest the validity of this peripheral biomarker. Our study offers a potential explanation for the comprehensive drug development program undertaken thus far yielding negative results and suggests that a significant proportion, but not all individuals with FXS, may benefit from the reduction of excessive levels of protein synthesis

    AP2α controls the dynamic balance between miR-126&126∗ and miR-221&222 during melanoma progression

    Get PDF
    Accumulating evidences have shown the association between aberrantly expressed microRNAs (miRs) and cancer, where these small regulatory RNAs appear to dictate the cell fate by regulating all the main biological processes. We demonstrated the responsibility of the circuitry connecting the oncomiR-221&222 with the tumor suppressors miR-126&126∗ in melanoma development and progression. According to the inverse correlation between endogenous miR-221&222 and miR-126&126∗, respectively increasing or decreasing with malignancy, their enforced expression or silencing was sufficient for a reciprocal regulation. In line with the opposite roles of these miRs, protein analyses confirmed the reverse expression pattern of miR-126&126∗-targeted genes that were induced by miR-221&222. Looking for a central player in this complex network, we revealed the dual regulation of AP2α, on one side directly targeted by miR-221&222 and on the other a transcriptional activator of miR-126&126∗. We showed the chance of restoring miR-126&126∗ expression in metastatic melanoma to reduce the amount of mature intracellular heparin-binding EGF like growth factor, thus preventing promyelocytic leukemia zinc finger delocalization and maintaining its repression on miR-221&222 promoter. Thus, the low-residual quantity of these two miRs assures the release of AP2α expression, which in turn binds to and induces miR-126&126∗ transcription. All together these results point to an unbalanced ratio functional to melanoma malignancy between these two couples of miRs. During progression this balance gradually moves from miR-126&126∗ toward miR-221&222. This circuitry, besides confirming the central role of AP2α in orchestrating melanoma development and/or progression, further displays the significance of these miRs in cancer and the option of utilizing them for novel therapeutics
    • 

    corecore