124 research outputs found
Automation of motor dexterity assessment
Motor dexterity assessment is regularly performed in rehabilitation wards to establish patient status and automatization for such routinary task is sought. A system for automatizing the assessment of motor dexterity based on the Fugl-Meyer scale and with loose restrictions on sensing technologies is presented. The system consists of two main elements: 1) A data representation that abstracts the low level information obtained from a variety of sensors, into a highly separable low dimensionality encoding employing t-distributed Stochastic Neighbourhood Embedding, and, 2) central to this communication, a multi-label classifier that boosts classification rates by exploiting the fact that the classes corresponding to the individual exercises are naturally organized as a network. Depending on the targeted therapeutic movement class labels i.e. exercises scores, are highly correlated-patients who perform well in one, tends to perform well in related exercises-; and critically no node can be used as proxy of others - an exercise does not encode the information of other exercises. Over data from a cohort of 20 patients, the novel classifier outperforms classical Naive Bayes, random forest and variants of support vector machines (ANOVA: p <; 0.001). The novel multi-label classification strategy fulfills an automatic system for motor dexterity assessment, with implications for lessening therapist's workloads, reducing healthcare costs and providing support for home-based virtual rehabilitation and telerehabilitation alternatives
Dealing with a Missing Sensor in a Multilabel and Multimodal Automatic Affective States Recognition System
Data from multiple sensors can boost the automatic
recognition of multiple affective states in a multilabel and multimodal recognition system. At any time, the streaming from any
of the contributing sensors can be missing. This work proposes
a method for dealing with a missing sensor in a multilabel and
multimodal automatic affective states recognition system. The
proposed method, called Hot Deck using Conditional Probability
Tables (HD-CPT), is incorporated into a multimodal affective
state recognition system for compensating the loss of a sensor
using the recorded historical information of the sensor and its
interaction with the other available sensors. In this work, we
consider a multilabel classifier, named Circular Classifier Chain,
for the automatic recognition of four states: tiredness, anxiety,
pain, and engagement; combined with a multimodal classifier
based on three sensors: fingers pressure, hand movements,
and facial expressions; which was adapted for coping with the
problem of a missing sensor in a virtual rehabilitation platform
for post-stroke patients. A dataset of five post-stroke patients who
attended ten longitudinal rehabilitation sessions was used for the
evaluation. The inclusion of HD-CPT compensated for the loss
of one sensor with results above those obtained with only the
remaining sensors available. HD-CPT prevents the system from
collapsing when a sensor fails, providing continuity of operation
with results that attenuate the loss of the sensor. The proposed
method HD-CPT can provide robustness for the naturalistic
everyday use of an affective states recognition system
Mocarts: a lightweight radiation transport simulator for easy handling of complex sensing geometries
In functional neuroimaging (fNIRS), elaborated sensing geometries pairing multiple light sources and detectors arranged over the tissue surface are needed. A variety of software tools for probing forward models of radiation transport in tissue exist, but their handling of sensing geometries and specification of complex tissue architectures is, most times, cumbersome. In this work, we introduce a lightweight simulator, Monte Carlo Radiation Transport Simulator (MOCARTS) that attends these demands for simplifying specification of tissue architectures and complex sensing geometries. An object-oriented architecture facilitates such goal. The simulator core is evolved from the Monte Carlo Multi-Layer (mcml) tool but extended to support multi-channel simulations. Verification against mcml yields negligible error (RMSE~4-10e-9) over a photon trajectory. Full simulations show concurrent validity of the proposed tool. Finally, the ability of the new software to simulate multi-channel sensing geometries and to define biological tissue models in an intuitive nested-hierarchy way are exemplified
Visual gaze patterns reveal surgeons' ability to identify risk of bile duct injury during laparoscopic cholecystectomy
BACKGROUND: Bile duct injury is a serious surgical complication of laparoscopic cholecystectomy. The aim of this study was to identify distinct visual gaze patterns associated with the prompt detection of bile duct injury risk during laparoscopic cholecystectomy. METHODS: Twenty-nine participants viewed a laparoscopic cholecystectomy that led to a serious bile duct injury ('BDI video') and an uneventful procedure ('control video') and reported when an error was perceived that could result in bile duct injury. Outcome parameters include fixation sequences on anatomical structures and eye tracking metrics. Surgeons were stratified into two groups based on performance and compared. RESULTS: The 'early detector' group displayed reduced common bile duct dwell time in the first half of the BDI video, as well as increased cystic duct dwell time and Calot's triangle glances count during Calot's triangle dissection in the control video. Machine learning based classification of fixation sequences demonstrated clear separability between early and late detector groups. CONCLUSION: There are discernible differences in gaze patterns associated with early recognition of impending bile duct injury. The results could be transitioned into real time and used as an intraoperative early warning system and in an educational setting to improve surgical safety and performance
Quantitative analysis of multi-spectral fundus images
We have developed a new technique for extracting histological parameters from multi-spectral images of the ocular fundus. The new method uses a Monte Carlo simulation of the reflectance of the fundus to model how the spectral reflectance of the tissue varies with differing tissue histology. The model is parameterised by the concentrations of the five main absorbers found in the fundus: retinal haemoglobins, choroidal haemoglobins, choroidal melanin, RPE melanin and macular pigment. These parameters are shown to give rise to distinct variations in the tissue colouration. We use the results of the Monte Carlo simulations to construct an inverse model which maps tissue colouration onto the model parameters. This allows the concentration and distribution of the five main absorbers to be determined from suitable multi-spectral images. We propose the use of "image quotients" to allow this information to be extracted from uncalibrated image data. The filters used to acquire the images are selected to ensure a one-to-one mapping between model parameters and image quotients. To recover five model parameters uniquely, images must be acquired in six distinct spectral bands. Theoretical investigations suggest that retinal haemoglobins and macular pigment can be recovered with RMS errors of less than 10%. We present parametric maps showing the variation of these parameters across the posterior pole of the fundus. The results are in agreement with known tissue histology for normal healthy subjects. We also present an early result which suggests that, with further development, the technique could be used to successfully detect retinal haemorrhages
Fuzzy synchronization of chaotic systems with hidden attractors
Chaotic systems are hard to synchronize, and no general solution exists. The presence of hidden attractors makes finding a solution particularly elusive. Successful synchronization critically depends on the control strategy, which must be carefully chosen considering system features such as the presence of hidden attractors. We studied the feasibility of fuzzy control for synchronizing chaotic systems with hidden attractors and employed a special numerical integration method that takes advantage of the oscillatory characteristic of chaotic systems. We hypothesized that fuzzy synchronization and the chosen numerical integration method can successfully deal with this case of synchronization. We tested two synchronization schemes: complete synchronization, which leverages linearization, and projective synchronization, capitalizing on parallel distributed compensation (PDC). We applied the proposal to a set of known chaotic systems of integer order with hidden attractors. Our results indicated that fuzzy control strategies combined with the special numerical integration method are effective tools to synchronize chaotic systems with hidden attractors. In addition, for projective synchronization, we propose a new strategy to optimize error convergence. Furthermore, we tested and compared different Takagi-Sugeno (T-S) fuzzy models obtained by tensor product (TP) model transformation. We found an effect of the fuzzy model of the chaotic system on the synchronization performance
- …