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ABSTRACT 

 

In applications of Diffuse Optical Imaging (DOI) such as 

functional neuroimaging (fNIRS), elaborated sensing 

geometries judiciously pairing multiple irradiation sources 

and detectors arranged over the tissue surface are needed. A 

variety of software tools for probing forward models of 

radiation transport in tissue exist, but their handling of 

intricate sensing geometries and specification of complex 

tissue architectures is, most times, cumbersome. In this 

work, we introduce a lightweight simulator, Monte Carlo 

Radiation Transport Simulator (MOCARTS) that attends 

these demands for simplifying specification of tissue 

architectures and simulation of complex sensing geometries. 

An object-oriented architecture facilitates such goal. The 

simulator core is evolved from the Monte Carlo Multi-Layer 

(mcml) tool but extended to support multi-channel 

simulations. Verification against mcml yields negligible 

error (RMSE~410e-9) over a photon trajectory attributable 

to different rounding approximations in the logarithm 

function among compilers. Full simulations show 

concurrent validity of the proposed tool. Finally, the ability 

of the new software to simulate multi-channel sensing 

geometries and to define biological tissue models in an 

intuitive nested-hierarchy way are exemplified. The 

proposed tool eases research for instance in image 

reconstruction, where it facilitates investigating the impact 

of extracerebral scalp blood flow on fNIRS.  

 

Index Terms— Monte Carlo, radiation propagation, 

sensing geometries, image formation 

 

1. INTRODUCTION 

 

Diffuse Optical Imaging (DOI), also known as functional 

Near infrared Spectroscopy (fNIRS) when applied to 

neuroimaging, exploits the optical window to non-

invasively monitor function of biological tissues such as 

brain [1], breast [2] or muscle [3]. DOI measures the optical 

attenuation ascribable to the cromophores present in the 

tissue, and capitalizes on the different extinction spectra of 

those chromophores [4].  The physical process of light-

tissue interaction, known as image formation, encodes in the 

remitted light, information about tissue histology and 

physiology. Mathematically, DOI involves solving an 

inverse and ill-posed problem [5]. This requires modeling 

and resolution of the so called forward (formation) and 

inverse (reconstruction) problems. The forward problem 

should consider both: the physical phenomena of light 

interaction with matter and the modeling of biological tissue 

within a computer system to output the spectrum of light 

exiting the tissue and reaching the photoreceptor. Radiation 

transport in matter obeys the radiation transport equation 

(RTE) [6] which has only been solved for specific cases, 

and thus more tractable approximations such as diffusion 

theory [7] are popular. 

A number of software tools have been developed to simulate 

radiation transport in biological matter, permitting inference 

and analysis of otherwise inviable or difficult to acquire 

observations. Among others; NIRFAST [8], TOAST [9], 

GEANT4 [10], MCX [11] and Monte Carlo Multi-Layer 

(mcml)[12]. Each one of these uses a different model of 

light propagation and exhibits varying capabilities. The first 

two, for instance, are based on diffusion theory as light 

propagation model and employ a mesh representation for the 

tissue. The latter three use the Monte Carlo method for 

approximating light propagation (although GEANT4 is also 

able to simulate other kinds of particles). In particular, mcml 

has become one of the most popular and widely used despite 

its interface limitations. For instance, mcml is unable to 

simulate several sources of light at once, tissue specification 

is not friendly nor flexible as soon as one deviates from flat 

homogeneous layers, and input and output format and data 

is rigid. 

This paper presents a simulator of radiation transport in 

biological media. The new simulator, inspired on mcml, 

addresses three main interface shortcomings of its 

predecessor. First, it provides a flexible way to describe 

biological tissues in a more intuitive and reusable manner. 

Second, it provides support to define and simulate multiple 

light sources and detectors that can be arranged in complex 

sensing geometries. And third, the formatting and 

organization of the input and output data is redefined over a 

more human-readable XML file format. 

In the remaining, section 2 presents basic light transport 

models. Section 3 details the proposed simulator and its 



contributions. Section 4 presents the verification and 

validation of the new software tool. Finally, a discussion 

and conclusions are given in section 5.  

 

2. LIGHT PROPAGATION 

 

Light interaction with matter can be described as a 

succession of absorption and scattering events. The latter 

generalizing specific boundary phenomena such as 

reflection, refraction and diffraction, and for biological 

media it follows the Mie regime [13]. Several models of 

radiation transport exist. The more general is the RTE, a 

balance equation (1) that determines the radiation at a 

location due to incoming, outgoing, absorbed and emitted 

photons within an infinitesimal volume in the medium [14]. 
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In the above equation,   is the speed of light in the medium, 

          is the radiance at point   in time   and direction   ,  
   and    are the absorption and scattering coefficients 

respectively,           is the phase function representing 

photon scattering from direction    to     and           is the 

light source. Analytical solutions to this equation are limited 

to homogeneous tissues and non complex geometries. A 

derivation of the RTE, known as Diffusion Equation [7] has 

been used in complex scenarios through the use of 

numerical methods [15, 8]. Other numerical approximations 

include Kubelka-Munk theory [16] and Inverse Adding-

Doubling [17]. 

A probabilistic alternative approximation to the RTE is 

based on the Monte Carlo (MC) method. MC is a stochastic 

method which provides approximated solutions to 

mathematical problems [18]. MC simulations approximate 

the RTE sampling two probability distributions that jointly 

model the propagation phenomena [19]. The first 

distribution determines the length of the photon packet step 

as it travels through the tissue before it suffers a new 

extinction event. The second distribution dictates the 

direction of the photon's propagation after a scattering event, 

that is the tissue (an-)isotropy function. In mcml the 

Henyey-Greenstein distribution is used to approximate the 

anisotropy of biological tissues. The propagation of 

radiation within the tissue is estimated by simulating the 

wandering of large numbers of photons until they wane or 

escape the tissue. Figure 1 shows the general flowchart for 

such procedure. 

The main disadvantage of this technique is the high 

computational cost required to afford a good approximation 

to the solution. However, in cases where there are non-

scattering tissues (e.g. the cerebrospinal fluid in the human 

head) this technique yields a more accurate solution than 

that of Diffusion Equation [7]. 

 

 
Fig 1. Monte Carlo radiation transport simulation flowchart 

(Adapted from [12]). 

 

3. MOCARTS: THE NEW RADIATION TRANSPORT 

SIMULATOR 

 

The core of the simulator developed in this work, 

MOCARTS, is founded in mcml. However, MOCARTS has 

been coded in Java and redesigned under the object-oriented 

paradigm (the original mcml was developed in C under the 

structured paradigm) in order to provide a portable and 

flexible tool and allowing the possibility to grow by 

independent modules. We only briefly describe the main 

features here, but a full description of the tool can be found 

in [20]. The software is available from; 

http://ccc.inaoep.mx/~f.orihuela-espina/Src/MOCARTS/. 

 

3.1. Software architecture 

The software architecture has been organized around 5 

packages, namely: Simulation, Tissue model, Sensing 

geometry, Utilities and User Interface. This design intends 

to decouple each part of the system, increasing the software 

modularity and permitting future growing of each part 

independently. The Simulation package is the cornerstone of 

the tool and is the physics engine. The Tissue model 

package contains the classes needed to represent and 

characterize the biological tissue and describing its 

corresponding optical properties. The Sensing geometry 

package accommodates those classes describing the 

emitters, receptors and their pairings. Finally, the latter two 

provide some basic functionality and encode the input parser 

and output writer. 

 

3.1. Radiation transport simulation 

MOCARTS has been developed under the same basis as 

mcml, i.e., physics governing light-tissue interaction was 

simulated with the Monte Carlo method considering the 

same two probabilities distributions: a negative exponential 

for the length of the photon step and Henyey-Greenstein for 

the angle of scattering direction. Analogous to mcml, photon 

scattering at the boundaries between layers are treated 

especially because these consider the differing refractive 

index between the layers according to Fresnel law. Light 

propagation is simulated launching one photon at a time.  

 

 



3.2. Flexibilization of the input parameters and tissue 

model specification. 

 In mcml, tissue specification is given by defining the optical 

properties of a set of flat homogeneous piled layers that 

compose the modeled tissue. In MOCARTS a nested-

hierarchy format is proposed to define tissues in a more 

intuitive, reusable and readable manner (Figure 2). In the 

top of the hierarchy is the BiologicalSlab that may be 

composed by a set of BiologicalSlices. Organs, tissues and 

tissue layers are all specific kinds of slices. An Organ in 

turn is composed by a set of Tissues and finally each Tissue 

is represented by a collection of Layers each characterized 

by their OpticalProperties. The model is defined by the user 

through an XML file formatted [21] according to the DTD 

in Figure 3.  

 

 
Fig 2. Class diagram for tissue characterization in 

MOCARTS. This design allows definition of biological 

tissues following a nested description. 

 

 
Fig 3. The proposed Document Type Definition (DTD) of 

MOCARTS’ input XML file format. 

 

3.3. Characterization of sensing geometries 

In addition to tissue specification, other input parameters 

regarding simulation have been made flexible. Mainly, 

sensing geometries are now more detailed capturing the 

definition of light sources (LS) and detectors (D) at explicit 

locations. Channels pairs LS-D are defined as an attribute of 

the detector setting the corresponding light source(s) from 

which the detector can accept light. The actual setup may 

involve modulation in different frequency bands. 

In mcml, information of absorption, reflection and 

transmittance is stored in a 2D matrix, by collapsing the 

radial information since only one source is simulated and 

the receptor is never explicitly modeled. Hence, MOCARTS 

departs in this aspect using a 3D matrix instead. This is 

because with multiple irradiation sources, light absorbed, 

reflected or transmitted must be identifiable for each light 

source to be analyzed, studied and/or captured by the 

possible multiple detectors. Figure 4 shows the new 

flowchart of the simulation process. Simulation of multiple 

sources are carried out one at a time. 

 
Fig 4. Flowchart of photon simulation with multiple light 

sources. Black boxes and lines correspond to the original 

flowchart of mcml. Blue boxes are the additional steps 

performed by MOCARTS.  

 

To provide traceability of the energy deposited by each light 

source, we use a three dimensional array where a linked list 

structure in each cell encode where every transport event 

has occurred. Every node in the list stores the values of the 

absorption, reflection or transmission at that location for 

every corresponding light source. Figure 5 schematically 

depicts the proposed data structure.  

 

 
Fig 5. Schematic representation of the data structure used to 

trace photon deposition for each light source. 

 

4. EXPERIMENTS AND RESULTS 

 

To assert the correctness function of MOCARTS 

verification and validation was performed. For the following 

results, a 4 layer tissue model of the human head was 

defined to serve as a testbed. The optical properties listed in 

Table 1 were taken from [22]. 



 

 

TABLE 1. Optical properties for the adult human head 

tissues. n is the refractive index, μa is the absorption 

coefficient, μs is the scattering coefficient, g is the 

anositropy factor and T is the tissue thickness. 

Tissue n [-] µa[cm
-1

] µs[cm
-1

] g 
T 

[cm] 

Scalp 1.42 0.127 190.376 0.900 0.3 

Skull 1.555 0.147 161.245 0.900 0.5 

Gray matter 1.360 0.270 75.157 0.899 0.4 

White matter 1.380 0.931 372.501 0.870 0.2 

 

4.1. Verification 

During the verification, we confirm that MOCARTS 

behaves exactly as its predecessor mcml for strictly 

controlled input where the stochastic seed of the random 

number generator is fixed. Simulations were carried out 

with 10
4
, 10

5
 and 10

6
 photons. The compared endpoints, 

according to the Root Mean Square Error in Eq. 2, were the 

individual photon trajectory as well as the total absorption, 

reflectance and transmittance. Verification results are 

summarized in Table 2 and different rounding made by the 

logarithm functions in the C and Java compilers was found 

to be responsible for the discrepancy. 
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  TABLE 2. Root Mean Square Error during the verification 

process. 

Output 
Root Mean Square Error 

10
3 
photons 10

4 
photons 10

6
 photons 

Photon trajectory - 4.0335e-009 - 

Absorption 0.0136 0.0026 0.0011 

Reflectance 0.2731 0.0728 0.0293 

Transmitance  4.7207e-004 1.1360e-004 7.3175e-005 

  

4.2. Concurrent Validity 

We hypothesized that both tools should lead to 

probabilistically similar results (concurrent validity). Thus, 

to validate the tool we carried out an experiment where the 

factor is the tool with two treatments; MOCARTS 

(intervention) and mcml (used as gold standard control). The 

experimental unit is the head model from where the 

observations are retrieved. As the control only allows 

simulations of one source of radiation, the number of 

sources was set to one. Unlike during verification, here the 

random number generator seed is not fixed, and hence 

replication was used to assert no significant difference exists 

in the results. Figure 6 shows the measured absorption, 

reflectance and transmittance for simulations with 10, 10
2
, 

10
3
, 10

4
, 10

5
 and 10

6 
photons.  

 

4.3. Simulation of multichannel sensing geometries 

Finally, to show the extra functionality of MOCARTS to 

deal with complex sensing geometries simulations, an 

example is shown in Figure 7 for a configuration of 5 light 

sources (blue) and 4 detectors (red) as well as a simulation 

in a model of the human head based on a MRI image.  

 
Fig 6. Absorption (left), Reflectance (center) and 

Transmittance (right) observed from the human head model 

for both mcml and MOCARTS for simulations with 

increasing number of photons. The similar trend and 

converging behavior with larger number of photons can be 

appreciated. 

  
 

Fig 7. Exemplification of multiple channels simulations in 

MOCARTS. Blue planes in the left figure correspond to 

slices of a flat modeled tissue. It can be seen, through the 

slices, the absorbed light in the tissue for every irradiation 

source. Right figure shows the absorption of three sources 

over a head model based on the structure segmented from a 

MRI image. 

 

5. DISCUSSION AND CONCLUSIONS 

 

Analytical solutions to radiation transport are difficult and 

thus computational simulations are now a popular tool for 

addressing questions of image formation. The probabilistic 

Monte Carlo model, despite being computationally 

expensive can produce excellent approximations when the 

tissue optical properties are accurately described. A number 

of simulators with varying degree of complexity are 

available. Here, we have verified and validated a novel 

lightweight alternative, MOCARTS, which inherits from 

mcml its physics engine but additionally offers three 

interface advantages; easy complex sensing geometries 

simulation, nested tissue characterization and XML based 

input/output formatting. Our next step for improving the 

tool shall be the parallelization of the individual photon 

simulation. Our research continues to characterize the 

impact of extracerebral scalp blood flow on fNIRS. 
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