Automation of motor dexterity assessment
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Abstract— Motor dexterity assessment is regularly performed
in rehabilitation wards to establish patient status and au-
tomatization for such routinary task is sought. A system
for automatizing the assessment of motor dexterity based on
the Fugl-Meyer scale and with loose restrictions on sensing
technologies is presented. The system consists of two main
elements: 1) A data representation that abstracts the low level
information obtained from a variety of sensors, into a highly
separable low dimensionality encoding employing t-distributed
Stochastic Neighbourhood Embedding, and, 2) central to this
communication, a multi-label classifier that boosts classification
rates by exploiting the fact that the classes corresponding to
the individual exercises are naturally organized as a network.
Depending on the targeted therapeutic movement class labels
i.e. exercises scores, are highly correlated -patients who perform
well in one, tends to perform well in related exercises-; and
critically no node can be used as proxy of others -an exercise
does not encode the information of other exercises. Over data
from a cohort of 20 patients, the novel classifier outperforms
classical Naive Bayes, random forest and variants of support
vector machines (ANOVA: p < 0.001). The novel multi-label
classification strategy fulfills an automatic system for motor
dexterity assessment, with implications for lessening therapist’s
workloads, reducing healthcare costs and providing support
for home-based virtual rehabilitation and telerehabilitation
alternatives.

I. INTRODUCTION

Following brain damage originated by stroke, brain trauma
or palsy among others, the surviving patient is often left
with a range of impairments -restriction of body functions-
and its consequences -limited activities and restricted social
participation- [17] including motor impairment. Motor im-
pairment may result in muscle weakness, poor stamina, lack
of muscle control or total paralysis, interfering with activities
of daily living and thus degrading the quality of living of
the patient. Motor rehabilitation refers to physical -targeting
recovery of gross motor skills- or occupational -targeting fine
motor control and recovery of activities- therapies aiming
at increasing the patient participation and daily activities
by improving function and minimize development of sec-
ondary problems [18]. During rehabilitation, the clinical team
routinely estimates the patient progress evaluating changes
in her motor dexterity. This assessment is carried out by
administrating some tests and establishing motor recovery
through clinically validated scales such as the Fugl-Meyer
scale [11]. A number of different clinical evaluation scales
appraise related but distinct constructs about motor recovery,

Inst. Nac. de Astrofisica, Optica y Electrénica (INAOE),Sta. Maria
Tonantzintla, Puebla, Mexico

* patrickheyerw@gmail.com

2Hosp. Universitario Benemérita Universidad Auténoma de Puebla,
Puebla, Mexico

including dexterity. Motor dexterity assessment is thus a
regular task performed by the therapists.

The automation of the motor dexterity assessment may
alleviate the workload burden of therapists during in-ward
sessions and collaterally reduce treatment costs for both the
healthcare system and the patient. In addition, this automa-
tion is a necessary step towards fully enabling information
technologies-based variants of occupational therapy such as
virtual rehabilitation [15], in which therapeutic exercises are
disguised as serious computer games; and telerehabilitation
[16], where exercises are delivered outward at the patient’s
residence via internet.

Given the demand for automating motor dexterity assess-
ment, the goal of this research is thus to build a system that
can automatically perform the dexterity assessment based
upon the Fugl-Meyer scale. Since the system has to work
both on hospitals alleviating therapists’ schedule, and at
homes supporting home-based rehabilitation, the sensing
requirements have to be flexible to adapt to different sce-
narios. The problem hence involves two stages; first, finding
a suitable data representation dictating the ability of the
system to cope with different sensing scenarios, and second,
a classification stage that actually resolves the assessment
problem by matching the patient exhibited performance to
its associated scale outcome.

Finding a suitable data representation requires transform-
ing raw data from different sensing geometries to a common
abstract data representation that encodes body positioning,
so this representation can be capitalized upon to follow a
single analysis path to discern motor assessment. In essence,
this is a manifold embedding problem and a vast range of
projection functions are available in the literature including
principal component analysis (PCA) [24], Isomap [25] or t-
distributed Stochastic Neighborhood Embedding (t-SNE) [4]
among many others. Following experimental testing reported
in [29], we chose t-SNE to achieve the representation that we
found to be the most beneficial for subsequent classification
in this particular problem. The building of the representation
is very briefly described in Sect. II-A.

This paper focuses on detailing our solution proposal for
the second stage of the problem, that of classifying motor
exercise performance that effectively affords the automation
of motor dexterity assessment. Since the Fugl-Mayer scale
requires the execution of several exercises, the classification
stage is naturally seen as a multi-label classification problem
whereby each exercise of the test represents a different
label. Multi-label classifiers are multivalued functions linking
observations to N class labels [1]-[3]. Existing multi-label
classification (MC) perspectives can be coarsely divided into



label power-set methods and binary relevance methods [5].
The former approaches create classifiers for all possible
combinations of labels but suffer from high computational
burden. The latter build individual classifiers per class ig-
noring any information about class interaction if existent.
In between, intermediate approaches maintain one classifier
per class but informing classifiers of outcomes resolved
earlier, thus fully or partially harnessing class interaction
information e.g. [6], ideally getting the best of both worlds.
These intermediate approaches vary in the way they pass re-
solved information to late resolved classifiers, from the most
simple list-like chain [9], to sophisticated hierarchical or tree-
like [3], [19] and network-based chain [6], [13] strategies.
Bayesian chain classifiers. model the class dependencies as a
bayesian network, and based on this structurebuild the chain
using the labels of the parents This circumstance matches
that of the problem of motor dexterity assessment and its
convenient automation that we are addressing here.

Our hypothesis, when building our solution, is then that
since parents might not be reliable representative of their
ancestors, relaxing the assumption of proxy-parents and
permitting any ancestors’ labels to reach their descendants
classifiers, shall result in an improvement in the classification
rates in scenarios such as the automatic assessment of motor
dexterity aforedescribed. Although we have previously hinted
this possibility of allowing the ancestors labels to reach
subsequent classifiers [19], this is the first time we implement
and validate this strategy. We further contribute here with
a feature selection step resolved by means of full model
selection, which we are not aware to have been anticipated
before in multi-label classification, and which is critical to
support the hypothesis as it will be shown. The proposed
solution is trialed on a dataset captured during clinical
assessment of motor dexterity of patients undergoing motor
rehabilitation, and shown to improve classification rates over
more simplistic classifiers.

A. The Fugl-Meyer Assessment (FMA)

Motor dexterity assessment evaluates, through clinically
validated scales, the ability of a patient to perform specific
movements related to how a healthy individual would have,
on average, performed such movement. Perhaps the most
widely used scale for the assessment of motor dexterity is the
Fugl-Meyer scale [11]. During the Fugl-Meyer assessment
(FMA) the patient executes a sequence of exercises which
are scored by the therapist to quantify the exhibited dexterity.
The FMA consists of several blocks of exercises, and for
assessment of the upper limb, only a subset of exercises
forming one of these blocks from the full FMA scale are
used. These are summarized in Table I, and some of these
exercises are illustrated in Figure 1. Each exercise is scored
on a 3-point ordinal scale; O (absence of movement), 1
(clearly impaired movement) or 2 (healthy-like movement),
and the final score is just the sum of all scores for the
individual exercises.

TABLE I: FMA exercises for the upper extremity.

#ID | Exercise Simplified Instructions

a) Extension With the elbow touching the side, and forearm

Flexion pointing forward move thew affected hand up
(hand) and down as if waving
b) Extension Move affected hand from the same side knee

to to the opposite knee and back.

c) Flexor Move affected hand from the opposite knee and

Synergy to same side ear pointing the elbow outwards.
d) Extensor Move affected hand from a lateral hanging
Synergy position to the opposite knee without moving

the trunk.

e) Combined Move affected hand from the same side knee

Synergy to the lower back.
f) Combined Move affected hand from a lateral hanging
Synergy position upwards to 90 degree (pointing to the

horizon) without flexing the elbow.

2) Pronation With elbow touching the side, and the forearm

Supina- pointing forward rotate the affected hand (palm
tion(hand) up — palm down)

h) Shoulder Ab- | Move affected hand from a lateral hanging
duction 90 position sideways to 90 degree.

i) Shoulder Move affected hand from pointing at the hori-
Flexion zon upwards 180 degree (reach up).

1) Coordination/ | Move the index finger of the affected hand
Speed from the opposite side knee to nose (5 repe-

titions as fast as possible)
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Fig. 1: Subset of upper extremity Fugl-Meyer exercises.

II. METHODOLOGY

A. Abstract data representation common to multiple sensing
geometries

Two sensing configurations were considered to demon-
strate the ability to escape a fix sensing geometry: (i) 3-
dimensional (3D) rotation, traslation, orientation was ac-
quired from inertial measurement units (IMU), and (ii) 3D
rotation and traslation was retrieved for each skeleton seg-
ment estimated by the Kinect using OpenNI implementation
for person detection. The raw signals vary between the
sensors and are not a good representation for classification
purposes [28].
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Fig. 2: Data-flow. a) Raw sensor data S, b) Orientation
space (schematic depiction alike a skeleton) f, ¢) Normalized
orientations g, d) Projection to salient component space using
t-SNE h. Illustrated data correspond to data collected during
a previous pilot on healthy subjects.

An abstract representation is obtained by transforming data
to a common space as we have previously reported [22], [23].
This representation is a function composition R = hogo f(S)



projecting the raw signal S first to an orientation space f,
normalizes the rotations g, and finally projects to a space of
salient components (h) with high class separability by means
of t-SNE [4] (see Fig: 2).

B. Chained multi-label classifiers

Let X,, denote observations and C' = {C"} a set of classes
with ¢, € C* the k-th label of the i-th class. In MC, the aim
is to assign a vector of labels ¢ = {ci } with i > 1 to a certain
observation X,,. This requires the definition of a multi-valued
classification model from observations to label sets f : X —
c. Often the goal is to find a projection f with high predictive
power as characterized by some acceptable trade-off among
type I and II errors. Such projection f can be split into a
collection of simpler single-valued f; : X — c'. Each f; can
benefit from knowing the decision of previously solved f;s,
fi: X x (i) = ¢ with (i) = {c], | j # i} C c a subset
of previously resolved decisions, with the critical question
of deciding the best subset (i) for each f;. In simple list-
like chain classifiers, classes C? are assigned a mathematical
relation of order R and ¢/(i) = {c], | j # i AR<}, with the
ordering being critical as any c), depends on the evaluation
of its predecessors in R.. In network-based classifiers, leaf
classifiers -the earliest to be evaluated- do not have parents
ie. /(i) = {0}, whereas for other nodes /(i) = {c], | j =
1...N,j # i} such that ¢/(¢) N ¢/ (j) = 0, that is ¢/(2) is
only left to contain its direct parents labels’. Note how the
chain is implicitly encoded in the ¢’(i)s. Upon definition of
the class dependency network C’, current approaches will
limit ¢/(i) = {Pa(c’)} where Pa(e) indicates the parents
of a node, assuming the class C* as a suitable proxy of all
preceding ancestors.

C. Augmentation of the network-based chain multi-label
classifiers with ancestors

1) Extending network-based chain classifiers to accept
ancestors: Our proposal starts by permitting a more flexible
definition of ¢/(i) whereby ¢/(i) = {c], | j =1...N,j # i}
but the constraint ¢’ (¢)N¢’(j) = () is dropped thus permitting
the incorporation into the current decision of decisions taken
by previous ancestors other than just parents. In the problem
of motor dexterity assessment, the classes C* correspond to
the subset of exercises of the FMA scale for the evaluation of
the motor dexterity in the upper limb summarized in Table I.
In this case, because of the domain application, we depart
from an acyclic graph defining the class dependency network
structure fixed a priori by a domain expert (LRC) and graphi-
cally illustrated in Fig 3a. However, the rationale of the newly
proposed ancestor-enriched chain classifier does not depend
on whether the class structure is automatically learned as in
the case of Bayesian network-based chain classifiers [6] or
given. Regular network-based chain classifiers use only the
output label of the direct parent classes as features as shown
in Fig: 3b. This new ancestor-enriched variant illustrated in
Fig.3c allows the classifier f; to exploit information from
any ancestor.
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(a) Original class dependency network defined by an expert

(b) Simple network-based label chaining; only labels from parents
are passed as features to child classifiers.

(c) Incorporating elders to the label chaining; all preceding clas-
sifier labels are forwarded as candidate features to subsequent
classifiers.

Fig. 3: Class dependency structure for the Fugl-Meyer exer-
cises for the assessment of the upper limb, and strategies for
label passing.

Fig. 4: Feature selection per classifier using Particle Swarm
Model Selection (with fixed SVM classifier).

2) Selection of appropriate ancestors; optimizing ' (i):
By default, the new chaining use all ancestors’ labels as
additional features. Not all additional candidate features ¢,
available for classifier f; may convey interesting information
to help the classification C*. Thus, a filtering stage, imple-
mented by means of feature selection techniques, is added
to optimize ¢'(¢) as depicted in Fig: 4. The feature selection
strategy is based on Particle Swarm Model Selection (PSMS)
[7] to select the best performing features of each individual
classifier considering only SVM classifiers. The fixing of
the classifier in the PSMS only affects feature selection, and
not the classifier themselves or parameters. Although full
model selection is possible (maybe even beneficial), its use
is unrelated to the contribution expressed in this work and
thus it is intentionally restricted here. This decision reduces
the computational burden of the simulations.



III. EXPERIMENTS AND RESULTS
A. Experiment set up

Data was obtained from 20 consenting patients suffering
motor impairment in their upper limb of different etiology
undergoing motor rehabilitation at four different rehabilita-
tion centers from Mexico. Cohort demographics is presented
in Table II. The participants were assessed by a trained
clinician (LRC) for motor dexterity of their upper limb using
the Fugl-Meyer scale.

All 20 patients completed the 10 evaluation exercises
corresponding to the FMA subset for the upper extremity
and their total scores are indicated in Table II. Snapshots of
the experimental session are pictured in Fig: 5.

TABLE II: Cohort demographics. FMA indicates the total
score which is the sum of the individual scores across all
exercises. Hand.: Handedness, Aff.: Affected side

Subj. | Gender | Condition | FMA | Hand. | Aff.
1 Male Trauma 1 Right | Right
2 Male Stroke 5 Left Right
3 Female | Stroke 16 Right | Left
4 Male Trauma 19 Right | Left
5 Female | Stroke 52 Left Right
6 Male Trauma 13 Right | Right
7 Male Stroke 0 Right | Left
8 Female | Stroke 0 Right | Right
9 Male Trauma 25 Right | Right
10 Male Stroke 53 Right | Right
11 Female | Stroke 32 Left Right
12 Male Stroke 12 Right | Left
13 Male Stroke 60 Right | Right
14 Female | Trauma 5 Right | Left
15 Male Stroke 3 Left Right
16 Male Stroke 53 Right | Right
17 Female | Stroke 32 Right | Left
18 Male Stroke 12 Right | Right
19 Male Stroke 60 Right | Right
20 Female | Stroke 5 Left Left

Fig. 5: Experimental sessions. Patients executing the Fugl
Meyer exercises. A trained clinician (not in the image) was
assessing their dexterity while the sensors acquired data.
Patients faces have been blurried for blinding.

During the assessment by the human expert, the patient’s
upper limb kinematics was concurrently being monitored at
60 Hz with (i) an IMU (LPSM-B from LP-Research, China)
placed on the upper arm of the affected side and (ii) a Kinect
sensor (Microsoft, USA) placed at approximately 2m in front
of the patient at a height of 85cm on a fixed tripode.

B. Analysis

The individual scores given by the evaluating expert were
accepted as the ground truth. The Fugl-Meyer Assessment
(FMA) [11] exhibits high reliability [10]. Because of this
reliability, there is only need for one expert to give the
scores for the ground truth. An expert physiotherapist (LRC)
manually fixated the network of dependencies among the
different exercises, as shown in Fig 3c

The experimental dataset was used to train a series of ten
-one per exercise- Support Vector Machine(SVM) [8] clas-
sifiers with a radial basis function kernel that scored (clas-
sified) the corresponding exercises independently. Optimiza-
tion of the feature selection stage implemented with PSMS
was guided by accuracy(=(TP+TN)/(TP+TN+FP+FN))!.
Each of the proposed methods was also used to train a sets
of ten SVM chained classifiers with a radial based function
kernel.

A leave one subject out replication strategy was used
for validation purposes. Comparison is established against
paradigmatic independent classifiers (IC) -which makes no
use of class interaction-, a naive list-like chain classifier
(LLC) -which does not exploit the hierarchical structure
of the classes, and a baseline graph-like single parent-
based chain (SLC) -for which the class structure assumes
that parents labels encapsulate all previous classification
exercises-. In addition, for our ancestor augmented proposal,
both intermediate values -not exploiting feature selection
(MLC)- and the final values -exploiting feature selection
(FS-MLC)- are reported. Primary endpoint was classifier
accuracy. Statistical analysis of significance was established
using one way ANOVA followed by post-hoc pairwise Tukey
comparison.

C. Results

The effectiveness of the common representation to abstract
the sensing geometry and pave the way for classification
is exemplified in Fig: 6. Table III summarizes average
accuracy and standard deviation of classifiers. The methods
using MLLC surpased the acurracy of LLC and SLLC by
a statisticaly significant range P < 0.05. In addition the
proposed FS-MLC method shows, an average increment in
accuracy of 3.8 and a std reduction of 0.45 compared to
MLLC. This difference was statistically significant P <
0.001 using a Wilcoxon-Mann-Whitney Test compared to
MLLC indicating that the use of feature selection for each
exercise independently generates an immediate improvement
in classification.

D. Discussion

Several efforts have been made towards providing an
automatic solution to this problem [12], [20], [21] but thus
far the reported success rates (maximum reported accuracy:
87.3%) [30], translating into 44.65 correspondence with
clinician opinion) are insufficient to guarantee wide clinical

I'TP: True positives; TN: True negatives; FP: False Positives; FN: False
negatives.



(b) Classical network-based chaining (using only parents) (SLC)
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(c) List-like chaining (LLC)

(d) Ancestor-enriched network-based chaining (MLC)

FS_MLC_10

(e) Filtered ancestor-enriched network-based chaining (FS-MLC)

Fig. 7: Flow of predictive power (as expressed by accuracy) across classifiers. The circle radius is proportional to the
average accuracy reach by the classifier. The shade of gray represents scaled standard deviation (black = higher deviation;
white=lower). This representation suggests how each classifier improves its chances of higher prediction rates as it taps
on previously made decisions and how the different strategies of building ¢/(¢) affects the uncertainty in the classification

process.
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Fig. 6: Projection of experimental data from the different

sensing geometries to the common abstract representation
for one of the Fugl-Meyer exercises. It can be appreciated
how the data from equal performances map to similar regions
of the space regardless of the different generative sensing
strategy.

acceptance. Our hypothesis in this regard is that if we can
increase classification rates of motor dexterity exercises by
capitalizing on information shared among classes, then the
technology will come closer to acceptance by clinicians. As
the results suggest, the average classification benefits from
the relaxation of the assumption that parent nodes encode all
previous information and critically from the feature selection
stage. As the early classifiers provide their decisions to
the subsequent classifier, the output appears to reduce its
uncertainty in the sense that there is a decreasing trend in

TABLE III: Comparison of accuracy (mean+STD) across
different classifier methods on a leave one out validation.

Classifier Accuracy Mean + STD
Naive Bayes 68.08 + 7.97
Random Forest 79.12 + 11.54
Lineal SVM 69.95 £+ 10.65
Radial SVM 79.53 + 6.93
PSMS 82.94 £ 4.94
LLC 84.62 £+ 5.82
SLLC 85.34 £+ 2.84
MLLC 89.85 £ 3.20
FS-MLLC 93.65 + 2.75

the standard deviation (see Fig: 7). Also, an interesting detail
to highlight, is that the early classifiers do not yet show the
improvement that their child’s exhibit permitting the SLC
approach to exhibit a non-significant higher accuracy for the
first two classifiers.

I'V. CONCLUSIONS AND FUTURE WORK

We have presented a novel classification strategy to realize
the automatic assessment of motor dexterity, a problem
which despite its potential impact remains unresolved from
the point of view of clinical acceptance. The system is
based on a novel network-based chain multi-label classifier
enriched with a critical feature selection step. The success
of the contribution (higher predictive power against tested
alternatives) appears to capitalize on the optimal selection
of the ancestors labels. Despite the improved accuracy, we



consider that there is still work ahead before a clinically
acceptable automatic alternative to human expert conducted
assessment of motor dexterity will be available.

The findings are limited by the small sample size and
uncorrected unbalance in class labels, but the results suffice
to suggest the feasibility of the approach. The unaggressive
processing and the inexpensive optimization used makes
us believe that there is margin for improvement. Also, we
have not reported on how the achieved classification rates
translates to reliability as compared to different experts.
Although as indicated, FMA enjoys high reliability, this does
not equate to all clinicians reaching the same score when
blind to each other. If an automated system is to be clinically
accepted, it does have to afford maximal accuracy rates to
an accepted experiment specific ground truth, but to actually
show an inter-rater reliability comparable to that of other
human experts.

As future work we consider exploring network-based
chain MC with a per class full model selection approach
using not only the best features for each class but also the
optimized classifier to provide a classification that exploit the
mutual information while locally optimizing each individual
classifier, and attending the necessity to achieve inter-rater
reliability to levels of human experts.

ACKNOWLEDGMENTS
PH received scholarship No. 339981 from CONACYT.

REFERENCES

[1] Zhang, M. L., and Zhang, K. (2010, July). Multi-label learning by
exploiting label dependency. In Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data mining (pp.
999-1008). ACM.

[2] Blockeel, H., Schietgat, L., Struyf, J., DZeroski, S., and Clare, A.
(2006). Decision trees for hierarchical multilabel classification: A case
study in functional genomics (pp. 18-29). Springer Berlin Heidelberg

[3] Vens, C., Struyf, J., Schietgat, L., DZeroski, S., and Blockeel, H.
(2008). Decision trees for hierarchical multi-label classification. Ma-
chine Learning, 73(2), 185-214.

[4] Van der Maaten, L., and Hinton, G. (2008). Visualizing data using t-
SNE. Journal of Machine Learning Research, 9(2579-2605), 85.

[5] Tsoumakas, G., and Katakis, I. (2006). Multi-label classification: An
overview. Dept. of Informatics, Aristotle University of Thessaloniki,
Greece.

[6] Sucar, L. E., Bielza, C., Morales, E. F., Hernandez-Leal, P., Zaragoza,
J. H., and Larrafiaga, P. (2014). Multi-label classification with Bayesian
network-based chain classifiers. Pattern Recognition Letters, 41, 14-22.

[7] Escalante, H. J., Montes, M., Sucar, L. E. (2009). Particle swarm model
selection. The Journal of Machine Learning Research, 10, 405-440.

[8] Hearst, M. A., Dumais, S. T., Osman, E., Platt, J., and Scholkopf,
B. (1998). Support vector machines. Intelligent Systems and their
Applications, IEEE, 13(4), 18-28.

[9] Read, J., Pfahringer, B., Holmes, G., Andrank, E. (2011). Classifier
chains for multi-label classification. Machine learning, 85(3), 333-359.

[10] Duncan, P. W., Propst, M., and Nelson, S. G. (1983). Reliability
of the Fugl-Meyer assessment of sensorimotor recovery following
cerebrovascular accident. Physical therapy, 63(10), 1606-1610

[11] FuglMeyer, A. R., Jadsko, I. L., Olsson, S., and Steglind, S. (1975).
THE POST-STROKE HEMIPLEGIC PATIENT. Scand J Rehab Med,
7(1341).

[12] Quintana, G. E., Sucar, L. E., Azcérate, G., and Leder, R. (2008).
Qualification of arm gestures using hidden markov models. In Auto-
matic Face and Gesture Recognition. 8th IEEE International Conference
on.

[13] Rousu, J., Saunders, C., Szedmak, S., and Shawe-Taylor, J. (2006).
Kernel-based learning of hierarchical multilabel classification models.
The Journal of Machine Learning Research, 7, 1601-1626.

[14] Duncan, P. W., Goldstein, L. B., Matchar, D., Divine, G. W., and
Feussner, J. (1992). Measurement of motor recovery after stroke.
Outcome assessment and sample size requirements. Stroke, 23(8), 1084-
1089.

[15] Sucar, L. E., Orihuela-Espina, F., Velazquez, R. L., Reinkensmeyer,
D. J., Leder, R., and Herndndez-Franco, J. (2014). Gesture therapy: An
upper limb virtual reality-based motor rehabilitation platform. Neural
Systems and Rehabilitation Engineering, IEEE Transactions on, 22(3),
634-643.

[16] Reinkensmeyer, D. J., Pang, C. T., Nessler, J. A., and Painter, C. C.
(2001). Java therapy: Web-based robotic rehabilitation. Integration of
assistive technology in the information age, 9, 66-71.

[17] World Health Organization. (2001). International classification of
functioning, disability and health: ICF. World Health Organization
http://www.who.int/classifications/icf/en/

[18] Bonnechere, B., Jansen, B., Omelina, L., Degelaen, M., Wermenbol,
V., Rooze, M., and Jan, S. V. S. (2014). Can serious games be
incorporated with conventional treatment of children with cerebral
palsy? A review. Research in developmental disabilities,

[19] Ramirez-Corona, M., Sucar, L. E., and Morales, E. F. (2014). Multi-
label classification for tree and directed acyclic graphs hierarchies. In
Probabilistic Graphical Models

[20] Bento, V. E,, Cruz, V. T., Ribeiro, D. D., and Cunha, J. P. (2011, Au-
gust). Towards a movement quantification system capable of automatic
evaluation of upper limb motor function after neurological injury. In
Engineering in Medicine and Biology Society

[21] Allin, S., and Ramanan, D. (2007, May). Assessment of Post-Stroke
Functioning Using Machine Vision. In MVA (pp. 299-302).

[22] Heyer, P., Castrejon, L., Orihuela-Espina, F., and Sucar, LE. (2016,
May)Sensor Abstracted Extremity Representation for Automatic Fugl-
Meyer Assessment. AFI 360 Conference Track on Future Internet e-
Health

[23] Heyer, P., Castrejon, L., Orihuela-Espina, F., and Sucar, LE. (2016,
May) Sensor Adequacy and Arm Movement Encoding For Automatic
Assessment of Motor Dexterity for Virtual Rehabilitation. The 9th
World Congress for NeuroRehabilitation, WCNR 2016

[24] Hotelling, Harold. (1933) Analysis of a complex of statistical variables
into principal components. Journal of educational psychology

[25] Tenenbaum, Joshua B and De Silva, Vin and Langford, John C. (2000)
A global geometric framework for nonlinear dimensionality reduction.
Science

[26] Pedregosa, Fabian and Varoquaux, Gaél and Gramfort, Alexandre and
Michel, Vincent and Thirion, Bertrand and Grisel, Olivier and Blondel,
Mathieu and Prettenhofer, Peter and Weiss, Ron and Dubourg, Vincent
and others. (2011) Scikit-learn: Machine learning in Python.

[27] Balasubramanian, Mukund and Schwartz, Eric L. (2002) The isomap
algorithm and topological stability. Science

[28] Bengio, Yoshua, Aaron Courville, and Pascal Vincent. (2013) Repre-
sentation learning: A review and new perspectives” IEEE transactions
on pattern analysis and machine intelligence

[29] Heyer, P. (2017) Automatic assessment of motor dexterity for rehabil-
itation with a representation nonspecific on sensor. Dep. Computational
Sciences. Instituto Nacional de Astrofsica, ptica y Electrnica

[30] Kim, W. S., Cho, S., Baek, D., Bang, H., and Paik, N. J. (2016). Upper
Extremity Functional Evaluation by Fugl-Meyer Assessment Scoring
Using Depth-Sensing Camera in Hemiplegic Stroke Patients. PloS one,
11(7), e0158640.



