78 research outputs found

    Gamma/Hadron Separation with the HAWC Observatory

    Get PDF
    The High Altitude Water Cherenkov (HAWC) gamma-ray observatory observesatmospheric showers produced by incident gamma rays and cosmic rays with energyfrom 300 GeV to more than 100 TeV. A crucial phase in analyzing gamma-raysources using ground-based gamma-ray detectors like HAWC is to identify theshowers produced by gamma rays or hadrons. The HAWC observatory records roughly25,000 events per second, with hadrons representing the vast majority(>99.9%>99.9\%) of these events. The standard gamma/hadron separation technique inHAWC uses a simple rectangular cut involving only two parameters. This workdescribes the implementation of more sophisticated gamma/hadron separationtechniques, via machine learning methods (boosted decision trees and neuralnetworks), and summarizes the resulting improvements in gamma/hadron separationobtained in HAWC.<br

    The TeV Sun Rises: Discovery of Gamma rays from the Quiescent Sun with HAWC

    Full text link
    We report the first detection of a TeV gamma-ray flux from the solar disk (6.3σ\sigma), based on 6.1 years of data from the High Altitude Water Cherenkov (HAWC) observatory. The 0.5--2.6 TeV spectrum is well fit by a power law, dN/dE = A(E/1 TeV)γA (E/1 \text{ TeV})^{-\gamma}, with A=(1.6±0.3)×1012A = (1.6 \pm 0.3) \times 10^{-12} TeV1^{-1} cm2^{-2} s1^{-1} and γ=3.62±0.14\gamma = -3.62 \pm 0.14. The flux shows a strong indication of anticorrelation with solar activity. These results extend the bright, hard GeV emission from the disk observed with Fermi-LAT, seemingly due to hadronic Galactic cosmic rays showering on nuclei in the solar atmosphere. However, current theoretical models are unable to explain the details of how solar magnetic fields shape these interactions. HAWC's TeV detection thus deepens the mysteries of the solar-disk emission.Comment: 15 pages, 8 figures including supplementary material. Accepted for publication in Physical Review Letter

    Horizontal muon track identification with neural networks in HAWC

    Get PDF
    Nowadays the implementation of artificial neural networks in high-energyphysics has obtained excellent results on improving signal detection. In thiswork we propose to use neural networks (NNs) for event discrimination in HAWC.This observatory is a water Cherenkov gamma-ray detector that in recent yearshas implemented algorithms to identify horizontal muon tracks. However, thesealgorithms are not very efficient. In this work we describe the implementationof three NNs: two based on image classification and one based on objectdetection. Using these algorithms we obtain an increase in the number ofidentified tracks. The results of this study could be used in the future toimprove the performance of the Earth-skimming technique for the indirectmeasurement of neutrinos with HAWC.<br

    A Contribution of the HAWC Observatory to the TeV era in the High Energy Gamma-Ray Astrophysics: The case of the TeV-Halos

    Full text link
    We present a short overview of the TeV-Halos objects as a discovery and a relevant contribution of the High Altitude Water \v{C}erenkov (HAWC) observatory to TeV astrophysics. We discuss history, discovery, knowledge, and the next step through a new and more detailed analysis than the original study in 2017. TeV-Halos will contribute to resolving the problem of the local positron excess observed on the Earth. To clarify the latter, understanding the diffusion process is mandatory.Comment: Work presented in the 21st International Symposium on Very High Energy Cosmic Ray Interactions(ISVHECRI 2022) as part of the Ph. D. Thesis of Ramiro Torres-Escobedo (SJTU, Shanghai, China). Accepted for publication in SciPost Physics Proceedings (ISSN 2666-4003). 11 pages, 3 Figures. Short overview of HAWC and TeV Halos objects until 202

    The High-Altitude Water Cherenkov (HAWC) Observatory in M\'exico: The Primary Detector

    Full text link
    The High-Altitude Water Cherenkov (HAWC) observatory is a second-generation continuously operated, wide field-of-view, TeV gamma-ray observatory. The HAWC observatory and its analysis techniques build on experience of the Milagro experiment in using ground-based water Cherenkov detectors for gamma-ray astronomy. HAWC is located on the Sierra Negra volcano in M\'exico at an elevation of 4100 meters above sea level. The completed HAWC observatory principal detector (HAWC) consists of 300 closely spaced water Cherenkov detectors, each equipped with four photomultiplier tubes to provide timing and charge information to reconstruct the extensive air shower energy and arrival direction. The HAWC observatory has been optimized to observe transient and steady emission from sources of gamma rays within an energy range from several hundred GeV to several hundred TeV. However, most of the air showers detected are initiated by cosmic rays, allowing studies of cosmic rays also to be performed. This paper describes the characteristics of the HAWC main array and its hardware.Comment: Accepted for publications in Nuclear Inst. and Methods in Physics Research, A (2023) 168253 ( https://www.sciencedirect.com/science/article/abs/pii/S0168900223002437 ); 39 pages, 14 Figure

    Multimessenger NuEM Alerts with AMON

    Get PDF
    The Astrophysical Multimessenger Observatory Network (AMON), has developed a real-time multi-messenger alert system. The system performs coincidence analyses of datasets from gamma-ray and neutrino detectors, making the Neutrino-Electromagnetic (NuEM) alert channel. For these analyses, AMON takes advantage of sub-threshold events, i.e., events that by themselves are not significant in the individual detectors. The main purpose of this channel is to search for gamma-ray counterparts of neutrino events. We will describe the different analyses that make-up this channel and present a selection of recent results

    Combined dark matter searches towards dwarf spheroidal galaxies with Fermi-LAT, HAWC, H.E.S.S., MAGIC, and VERITAS

    Get PDF
    Cosmological and astrophysical observations suggest that 85% of the total matter of the Universe is made of Dark Matter (DM). However, its nature remains one of the most challenging and fundamental open questions of particle physics. Assuming particle DM, this exotic form of matter cannot consist of Standard Model (SM) particles. Many models have been developed to attempt unraveling the nature of DM such as Weakly Interacting Massive Particles (WIMPs), the most favored particle candidates. WIMP annihilations and decay could produce SM particles which in turn hadronize and decay to give SM secondaries such as high energy \u1d6fe rays. In the framework of indirect DM search, observations of promising targets are used to search for signatures of DM annihilation. Among these, the dwarf spheroidal galaxies (dSphs) are commonly favored owing to their expected high DM content and negligible astrophysical background. In this work, we present the very first combination of 20 dSph observations, performed by the Fermi-LAT, HAWC, H.E.S.S., MAGIC, and VERITAS collaborations in order to maximize the sensitivity of DM searches and improve the current results. We use a joint maximum likelihood approach combining each experiment’s individual analysis to derive more constraining upper limits on the WIMP DM self-annihilation cross-section as a function of DM particle mass. We present new DM constraints over the widest mass range ever reported, extending from 5 GeV to 100 TeV thanks to the combination of these five different \u1d6fe-ray instruments

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality
    corecore