1,230 research outputs found

    The back reaction and the effective Einstein's equation for the Universe with ideal fluid cosmological perturbations

    Get PDF
    We investigate the back reaction of cosmological perturbations on the evolution of the Universe using the renormalization group method. Starting from the second order perturbed Einstein's equation, we renormalize a scale factor of the Universe and derive the evolution equation for the effective scale factor which includes back reaction due to inhomogeneities of the Universe. The resulting equation has the same form as the standard Friedman-Robertson-Walker equation with the effective energy density and pressure which represent the back reaction effect.Comment: 16 pages, to appear in Phys. Rev.

    Postmodern String Theory: Stochastic Formulation

    Full text link
    In this paper we study the dynamics of a statistical ensemble of strings, building on a recently proposed gauge theory of the string geodesic field. We show that this stochastic approach is equivalent to the Carath\'eodory formulation of the Nambu-Goto action, supplemented by an averaging procedure over the family of classical string world-sheets which are solutions of the equation of motion. In this new framework, the string geodesic field is reinterpreted as the Gibbs current density associated with the string statistical ensemble. Next, we show that the classical field equations derived from the string gauge action, can be obtained as the semi-classical limit of the string functional wave equation. For closed strings, the wave equation itself is completely analogous to the Wheeler-DeWitt equation used in quantum cosmology. Thus, in the string case, the wave function has support on the space of all possible spatial loop configurations. Finally, we show that the string distribution induces a multi-phase, or {\it cellular} structure on the spacetime manifold characterized by domains with a purely Riemannian geometry separated by domain walls over which there exists a predominantly Weyl geometry.Comment: 24pages, ReVTe

    Emergent electrodynamics from the Nambu model for spontaneous Lorentz symmetry breaking

    Get PDF
    After imposing the Gauss law constraint as an initial condition upon the Hilbert space of the Nambu model, in all its generic realizations, we recover QED in the corresponding non-linear gauge A_{\mu}A^{\mu}=n^{2}M^{2}. Our result is non-perturbative in the parameter M for n^{2}\neq 0 and can be extended to the n^{2}=0 case. This shows that in the Nambu model, spontaneous Lorentz symmetry breaking dynamically generates gauge invariance, provided the Gauss law is imposed as an initial condition. In this way electrodynamics is recovered, with the photon being realized as the Nambu-Goldstone modes of the spontaneously broken symmetry, which finally turns out to be non-observableComment: 17 page

    Volume Expansion of Swiss-Cheese Universe

    Full text link
    In order to investigate the effect of inhomogeneities on the volume expansion of the universe, we study modified Swiss-Cheese universe model. Since this model is an exact solution of Einstein equations, we can get an insight into non-linear dynamics of inhomogeneous universe from it. We find that inhomogeneities make the volume expansion slower than that of the background Einstein-de Sitter universe when those can be regarded as small fluctuations in the background universe. This result is consistent with the previous studies based on the second order perturbation analysis. On the other hand, if the inhomogeneities can not be treated as small perturbations, the volume expansion of the universe depends on the type of fluctuations. Although the volume expansion rate approaches to the background value asymptotically, the volume itself can be finally arbitrarily smaller than the background one and can be larger than that of the background but there is an upper bound on it.Comment: 22 pages, 7 figures, to be submitted to Phys. Rev.

    The vacuum structure in a supersymmetric gauged Nambu-Jona-Lasinio model

    Full text link
    The dynamical breakdown of the SU(2)×U(1)SU(2) \times U(1) symmetry triggered by a top-antitop condensate is studied in a supersymmetric version of the gauged Nambu-Jona-Lasinio model. An effective potential approach is used to investigate the vacuum structure and the equivalence with the minimal supersymmetric standard model. The role of the soft supersymmetry breaking terms is analyzed in detail in a version of the model where the electroweak gauge interactions are turned off.Comment: 32 pages (+2 figures not included), Latex, LPTHE 93/0

    Back Reaction Problem in the Inflationary Universe

    Full text link
    We investigate the back reaction of cosmological perturbations on an inflationary universe using the renormalization-group method. The second-order zero mode solution which appears by the nonlinearity of the Einstein equation is regarded as a secular term of a perturbative expansion, we renormalized a constant of integration contained in the background solution and absorbed the secular term to this constant in a gauge-invariant manner. The resultant renormalization-group equation describes the back reaction effect of inhomogeneity on the background universe. For scalar type classical perturbation, by solving the renormalization-group equation, we find that the back reaction of the long wavelength fluctuation works as a positive spatial curvature, and the short wavelength fluctuation works as a radiation fluid. For the long wavelength quantum fluctuation, the effect of back reaction is equivalent to a negative spatial curvature.Comment: 17 page

    Two photon decay of π0\pi^0 and η\eta at finite temperature and density

    Full text link
    A comparative study of the anomalous decays π0,ηγγ\pi^0, \eta \to\gamma\gamma, at finite temperature and at finite density, is performed in the framework of the three--flavor Nambu--Jona-Lasinio. The similarities and differences between both scenarios are discussed. In both cases the lifetimes of these mesons decrease significantly at the critical point, although this might not be sufficient to observe enhancement of these decays in heavy-ion collisions.Comment: 5 pages, 1 figure. Talk given at Strange Quark Matter 2004, Cape Town, South Africa, 15-20 September, 200

    Solutions of gauge invariant cosmological perturbations in long-wavelength limit

    Get PDF
    We investigate gauge invariant cosmological perturbations in a spatially flat Friedman-Robertson-Walker universe with scalar fields. It is well known that the evolution equation for the gauge invariant quantities has exact solutions in the long-wavelength limit. We find that these gauge invariant solutions can be obtained by differentiating the background solution with respect to parameters contained in the background system. This method is very useful when we analyze the long-wavelength behavior of cosmological perturbation with multiple scalar fields.Comment: 17 pages, will appear in Classical and Quantum Gravit

    Application of dispersion relations to low-energy meson-nucleon scattering

    Get PDF
    Relativistic dispersion relations are used to derive equations for low-energy S-, P-, and D-wave meson-nucleon scattering under the assumption that the (3,3) resonance dominates the dispersion integrals. The P-wave equations so obtained differ only slightly from those of the static fixed-source theory. The conclusions of the static theory are re-examined in the light of their new derivation

    An Attempt to Construct the Standard Model with Monopoles

    Get PDF
    We construct a model in which stable magnetic monopoles have magnetic charges that are identical to the electric charges on leptons and quarks and the colored monopoles are confined by strings in color singlets.Comment: 10 pages; LaTeX Added clarifying remarks, a Comment on the scattering of particles, acknowledgements and references. Version to be publishe
    corecore