44 research outputs found

    Investigation of the temperature-relatedwear performance of hard nanostructured coatings deposited on a s600 high speed steel

    Get PDF
    Thin hard coatings are widely known as key elements in many industrial fields, from equipment for metal machining to dental implants and orthopedic prosthesis. When it comes to machining and cutting tools, thin hard coatings are crucial for decreasing the coefficient of friction (COF) and for protecting tools against oxidation. The aim of this work was to evaluate the tribological performance of two commercially available thin hard coatings deposited by physical vapor deposition (PVD) on a high speed tool steel (S600) under extreme working conditions. For this purpose, pin-on-disc wear tests were carried out either at room temperature (293 K) or at high temperature (873 K) against alumina (Al2O3) balls. Two thin hard nitrogen-rich coatings were considered: a multilayer AlTiCrN and a superlattice (nanolayered) CrN/NbN. The surface and microstructure characterization were performed by optical profilometry, field-emission gun scanning electron microscopy (FEGSEM), and energy dispersive spectroscopy (EDS).Funding: This research was made possible by an NPRP award NPRP 5-423-2-167 from the Qatar National Research Fund (a member of The Qatar Foundation)

    Investigation of the Electrochemical Properties of CoAl-Layered Double Hydroxide/Ni(OH)2

    Get PDF
    Layered double hydroxides (LDH) as active electrode materials have become the focus of research in energy storage applications. The manufacturing of excellent electrochemical performance of the LDH electrode is still a challenge. In this paper, the production of CoAl-LDH@Ni(OH)2 is carried out in two steps, including hydrothermal and electrodeposition techniques. The prominent features of this electrode material are shown in the structural and morphological aspects, and the electrochemical properties are investigated by improving the conductivity and cycle stability. The core of this experimental study is to investigate the properties of the materials by depositing different amounts of nickel hydroxide and changing the loading of the active materials. The experimental results show that the specific capacity is 1810.5F·g−1 at 2 A/g current density and the cycle stability remained at 76% at 30 A g−1 for 3000 cycles. Moreover, a solid-state asymmetric supercapacitor with CoAl-LDH@Ni(OH)2 as the positive electrode and multi-walled carbon nanotube coated on the nickel foam as the negative electrode delivers high energy density (16.72 Wh kg−1 at the power density of 350.01 W kg−1). This study indicates the advantages of the design and synthesis of layered double hydroxides, a composite with excellent electrochemical properties that has potential applications in energy storage

    Mechanical and microstructure characterization of hard nanostructured N-bearing thin coating

    Get PDF
    Tools for machining are made of hard steels and cemented carbide (WC-Co). For specialized applications, such as aluminium machining, diamond or polycrystalline cubic boron nitride are also used. The main problem with steel, is that it exhibits a relatively low hardness (below 10GPa) which strongly decreases upon annealing above about 600K. Thus, the majority of modern tools are nowadays coated with hard coatings that increase the hardness, decrease the coefficient of friction and protect the tools against oxidation. A similar approach has been recently used to obtain a longer duration of the dies for aluminium die-casting. Multi-component and nanostructured materials represent a promising class of protective hard coatings due to their enhanced mechanical and thermal oxidation properties. Surface properties modification is an effective way to improve the performances of materials subjected to thermo-mechanical stress. Three different thin hard nitrogen-rich coatings were mechanically, microstructurally, and thermally characterized: a 2.5 micron-thick CrN-NbN, a 11.7 micron-thick TiAlN, and a 2.92 micron-thick AlTiCrxNy. The CrN-NbN coating main feature is the fabrication by the alternate deposition of 4nm thick-nanolayer of NewChrome (new type of CrN, with strong adhesion and low coating temperature). All the three coatings can reach hardness and elastic modulus in excess of 20, and 250 GPa, respectively. Their main applications include stainless steel drawing, plastic materials forming and extrusion and aluminum alloys die-casting. The here studied TiAlN (SBN, super booster nitride) is one of the latest evolution of TiAlN coatings for cutting applications, where maximum resistance to wear and oxidation are required. The AlTiCrxNy combines the very high wear resistance characteristic of the Cr-coatings and the high thermal stability and high-temperature hardness typical of Al-containing coatings. All the coatings were deposited on a S600 tool steels. The coatings were subjected to two different thermal cycling tests: one for 100 thermal cycles consisting of 60 s dwelling time, respectively at the high- (573 to 1173 K) and at the room-temperature, a second for 100 thermal cycles consisting of 115s dwelling time, at same temperatures of the first test, followed by 5s dwelling at room-temperature. The investigated coatings showed a sufficient-to-optimal thermal response in terms of stability of hardness, elastic modulus, and oxidation behavior. The temperature induced hardness and elastic modulus coating variations were measured by nanoindentation.NPRP grant # NPRP5–423–2–167, from the Qatar National Research Fund (a member of Qatar Foundation

    Electrodeposited Ni–Co layered double hydroxides on titanium carbide as a binder-free electrode for supercapacitors

    Get PDF
    We report the synthesized mixture of MXene and Ni–Co LDH on nickel foam by an electrodeposition technique. The specific capacitance of the mixture attained 983.6 F g−1 at a discharge current of 2 A g−1, which is greater than that of pure MXene. Compared to Ni–Co LDH, the sample created through electrodeposition provided a better rate capability of 983.6 F g−1 at 2 A g−1 and 536.6 F g−1 at 50 A g−1 and cycling stability with 76% retention after 5000 cycles at 30 A g−1. Moreover, a solid-state asymmetric supercapacitor with MXene-LDH as the positive electrode and multi-walled carbon nanotube coated on the nickel foam as the negative electrode delivers high energy density (36.70 Wh kg−1 at the power density of 1.44 kW kg−1), which outperforms the other devices reported previously

    Synthesis and Characterization of a NiCo2O4@NiCo2O4 Hierarchical Mesoporous Nanoflake Electrode for Supercapacitor Applications

    Get PDF
    In this study, we synthesized binder-free NiCo2O4@NiCo2O4 nanostructured materials on nickel foam (NF) by combined hydrothermal and cyclic voltammetry deposition techniques followed by calcination at 350 °C to attain high-performance supercapacitors. The hierarchical porous NiCo2O4@NiCo2O4 structure, facilitating faster mass transport, exhibited good cycling stability of 83.6% after 5000 cycles and outstanding specific capacitance of 1398.73 F g−1 at the current density of 2 A·g−1, signifying its potential for energy storage applications. A solid-state supercapacitor was fabricated with the NiCo2O4@NiCo2O4 on NF as the positive electrode and the active carbon (AC) was deposited on NF as the negative electrode, delivering a high energy density of 46.46 Wh kg−1 at the power density of 269.77 W kg−1. This outstanding performance was attributed to its layered morphological characteristics. This study explored the potential application of cyclic voltammetry depositions in preparing binder-free NiCo2O4@NiCo2O4 materials with more uniform architecture for energy storage, in contrast to the traditional galvanostatic deposition methods

    Supercapacitor performance of porous nickel cobaltite nanosheets

    Get PDF
    In this work, nickel cobaltite (NiCo2O4) nanosheets with a porous structure were fabricated on nickel foam as a working electrode for supercapacitor applications. The nanosheets were fabricated by electrochemical deposition of nickel–cobalt hydroxide on the nickel foam substrate at ambient temperature in a three-electrode cell followed by annealing at 300 °C to transform the coating into a porous NiCo2O4 nanosheet. Field emission scanning electron microscopy and transmission electron microscopy revealed a three-dimensional mesoporous structure, which facilitates ion transport and electronic conduction for fast redox reactions. For one cycle, the NiCo2O4 electrodeposited nickel foam has a high specific capacitance (1734.9 F g−1) at a current density (CD) of 2 A g−1. The electrode capacitance decreased by only approximately 12.7% after 3500 cycles at a CD of 30 A g−1. Moreover, a solid-state asymmetric supercapacitor (ASC) was built utilising the NiCo2O4 nanosheets, carbon nanotubes, and a polyvinyl alcohol-potassium hydroxide gel as the anode, cathode, and solid-state electrolyte, respectively. The ASC displayed great electrochemical properties with a 42.25 W h kg−1 energy density at a power density of 298.79 W kg−1

    A Review on Fatigue Life Prediction Methods for Metals

    Get PDF
    Metallic materials are extensively used in engineering structures and fatigue failure is one of the most common failure modes of metal structures. Fatigue phenomena occur when a material is subjected to fluctuating stresses and strains, which lead to failure due to damage accumulation. Different methods, including the Palmgren-Miner linear damage rule- (LDR-) based, multiaxial and variable amplitude loading, stochastic-based, energy-based, and continuum damage mechanics methods, forecast fatigue life. This paper reviews fatigue life prediction techniques for metallic materials. An ideal fatigue life prediction model should include the main features of those already established methods, and its implementation in simulation systems could help engineers and scientists in different applications. In conclusion, LDR-based, multiaxial and variable amplitude loading, stochastic-based, continuum damage mechanics, and energy-based methods are easy, realistic, microstructure dependent, well timed, and damage connected, respectively, for the ideal prediction model. 2016 E. Santecchia et al.Scopu

    Tribo-mechanical properties evaluation of HA/TiO2/CNT nanocomposite

    Get PDF
    In this study, a combination of reverse microemulsion and hydrothermal techniques were used to synthesize HA. A hydrothermal method was used to synthesize HA/TiO2/CNT nanocomposite powders. Cold and hot isostatic pressing techniques were used to fabricate tablet-shaped samples. To investigate the biocompatibility and tribo-mechanical properties of HA/TiO2 and HA/TiO2/CNTs, four samples were prepared with different percentages of CNTs, namely, HA/TiO2 (S0), HA/TiO2/CNT (S1.0), HA/TiO2/CNT (S2.0), and HA/TiO2/CNT (S3.0). The microstructure and morphology of the HA/TiO2/CNTs were characterized by transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. Hardness test results show that S3.0 displayed the highest surface hardness (285 HV) compared to other samples. The wear rate of HA/TiO2/CNT with the highest CNT content showed a decrease compared with those of the other samples. The results from nanoindentation tests showed that Young's modulus of the S3.0 sample was 58.1% greater than that of the S0 sample. Furthermore, the human MDA-MB-231 cell line demonstrated good binding to the surface of the samples in the in-vitro biocompatibility evaluation of the HA/TiO2/CNT composites. 2021, The Author(s).This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2020R1A4A1019074).Scopu

    Multiple parts process planning in serial-parallel flexible flow lines: part I—process plan modeling framework

    No full text
    In recent years, integrated process planning and scheduling models have been proposed as solutions that can bridge the gap between practical process planning and production scheduling. However, most structures of these models have been algorithm-based and hence may not be very useful when a problem contains process and operational aspects that are difficult to capture in an algorithm template. In dynamic manufacturing environments, examples of such aspects include process and operational flexibilities that enable manufacturers to cope with unexpected variations in production and product mix. Appropriate process planning models that take cognizance of such aspects can be proven more useful to human process planners. In this paper, an innovative multiple parts process planning (MPPP) model for solving process planning problems with process and operational flexibilities is introduced. This model strikes a balance between process- and operations-related meta-data in a bid to capture process and operational flexibilities in the search for an optimal process planning solution. Merits of this model are discussed with reference to the operations of a typical serial-parallel flexible flow line. An illustrative example of the modeling framework is outlined. In seeking a feasible solution, a relative comparative analysis is carried out between; (a) a simulated annealing (SA) algorithm and (b) a simulated annealing algorithm that implements a mutation operator. Results show that the SA algorithm with a mutation operator outperforms the SA algorithm without a mutation operator

    Enhanced simulated-annealing-based algorithms and their applications to process planning in reconfigurable manufacturing systems

    No full text
    Capabilities of enhanced simulated-annealing-based algorithms in solving process planning problems in reconfigurable manufacturing are investigated. The algorithms are enhanced by combining variants of the simulated annealing technique with other algorithm concepts such as (i) knowledge exploitation and (ii) parallelism. Four configurations of simulated annealing algorithms are devised and engaged to solve an instance of a process planning problem in reconfigurable manufacturing systems. These configurations include; a basic simulated annealing algorithm, a variant of the basic simulated annealing algorithm, a variant of the simulated annealing algorithm coupled with auxiliary knowledge and a variant of the simulated annealing algorithm implemented in a quasi-parallel architecture. Although differences in performances were observed, the implemented algorithms are capable of obtaining good solutions in reasonable time. Experimental results show that the performances of the variants of simulated annealing based algorithms are better in comparison to a basic simulated annealing algorithm. A computational analysis and comparison using ANOVA indicates that improvements towards a better optimal solution can be gained by implementing variants of the simulated annealing algorithm. In addition, little speed gains can be obtained by implementing variants of the simulated annealing algorithms that are coupled with other algorithmic concepts
    corecore