6,635 research outputs found

    I hear you eat and speak: automatic recognition of eating condition and food type, use-cases, and impact on ASR performance

    Get PDF
    We propose a new recognition task in the area of computational paralinguistics: automatic recognition of eating conditions in speech, i. e., whether people are eating while speaking, and what they are eating. To this end, we introduce the audio-visual iHEARu-EAT database featuring 1.6 k utterances of 30 subjects (mean age: 26.1 years, standard deviation: 2.66 years, gender balanced, German speakers), six types of food (Apple, Nectarine, Banana, Haribo Smurfs, Biscuit, and Crisps), and read as well as spontaneous speech, which is made publicly available for research purposes. We start with demonstrating that for automatic speech recognition (ASR), it pays off to know whether speakers are eating or not. We also propose automatic classification both by brute-forcing of low-level acoustic features as well as higher-level features related to intelligibility, obtained from an Automatic Speech Recogniser. Prediction of the eating condition was performed with a Support Vector Machine (SVM) classifier employed in a leave-one-speaker-out evaluation framework. Results show that the binary prediction of eating condition (i. e., eating or not eating) can be easily solved independently of the speaking condition; the obtained average recalls are all above 90%. Low-level acoustic features provide the best performance on spontaneous speech, which reaches up to 62.3% average recall for multi-way classification of the eating condition, i. e., discriminating the six types of food, as well as not eating. The early fusion of features related to intelligibility with the brute-forced acoustic feature set improves the performance on read speech, reaching a 66.4% average recall for the multi-way classification task. Analysing features and classifier errors leads to a suitable ordinal scale for eating conditions, on which automatic regression can be performed with up to 56.2% determination coefficient

    Opportunities for Producing Table Grapes in Egypt for the Export Market: A Decision Case Study

    Get PDF
    The Barakat Fruit Farm desires to increase their share of the exportable grape market in Egypt. Unfortunately, the grape cultivars currently cultivated by the farm bear fruit after the early market window to the European Union when prices are high. An analysis of the company, competition, consumer, market channel, and conditions, provides insight into possible solutions to the challenges faced by the farm management. Designed for undergraduate classroom use, this case encourages students to think outside of traditional production techniques to arrive at solutions that are viable from both crop culture and financial standpoints.Decision case, horticulture, agriculture economics, grape production, Production Economics, Teaching/Communication/Extension/Profession, Q10, Q11,

    QoS Routing of VoIP using a Modified Widest-Shortest Routing Algorithm

    Full text link
    Implementation of current real time services (of which one of the more important is Voice over IP) on the current Internet face many obstacles, among them the issue of routing. Quality of service (QoS) routing, attempts to provide real time services with the required guarantees to achieve acceptable performance. In this paper we study VoIP routing using the Quality of Service (QSR) network simulator utilizing the Widest-Shortest routing algorithm to provide QoS using different metrics. We show that this algorithm using a modified cost metric based on the hop-normalized is able to route real time traffic away from congested links thus providing acceptable jitter, end-to-end delay and throughput to satisfy real time services requirements

    Exploring the Effect of In-plane Tensile Forces on the Two-way Shear Strength: review, comparative study and future works

    Get PDF
    Two-way shear failure of slabs is a sudden one, which has catastrophic outcomes. Slabs with large spans may be subjected to in-plane tensile forces due to thermal or earthquake loading. There is a lack of agreement between various design codes regarding the significance of in-plane tensile forces on the two-way shear strength. Two-way shear failure of slabs is a sudden one, which has catastrophic outcomes. Slabs with large dimensions may be subjected to in-plane tensile forces due to restraint or earthquake loading. There is a lack of agreement between various design codes regarding the significance of in-plane tensile forces on the two-way shear strength. The purpose of this study is to explore, propose a simplified two-way shear strength model, which includes the effect of in-plane tensile forces on the strength. A review for the experimental investigations, existing models, design codes for two-way shear of slabs is presented, with emphasis on in-plane tensile forces. The loading method used in the current experimental testing is misleading, where the two-way shear and the in-plane forces are independent. A comparative study was conducted between the existing formula and design codes for this case. The comparison between different codes with the experimental results show that the new proposed Eurocode design code was found to be the most accurate one. However, it did not include the effect of the in-plane tensile forces in a physically sound manner. In addition, more full testing of concrete slabs under combined two-way shear and tensile forces are required to refine this existing two-way shear design code provisions or develop new formulas or mechanical models

    3,6-Diacetyl-1,4-diphenyl-1,4-dihydro-1,2,4,5-tetra­zine

    Get PDF
    In the title compound, C18H16N4O2, the central six-membered ring has a boat conformation

    Establishment Network by Using FSO Link Based on MD Code for Hybrid SCM-SAC-OCDMA Wireless System

    Get PDF
    Since the wireless systems are working under nature environments and influenced by turbulence, weather in Iraq that leads to extended amount of fading signal, dissipation or attenuation. Basic “hybrid Subcarrier Multiplying Spectral Amplitude Coding (SCM-SAC) of Optical Code Division Multiple Access (OCDMA)" indoor or outdoor optical system depends on generally “Multi-Diagonal (MD)" security code by using optical space known as “Free Space Optic (FSO)" that was proposed in this work. It is found that the mention hybrid wireless systems can be used in operating mesh networks. The main proposed idea of hybrid optical technique was analyzed and simulated by normally taking into simulation account that the directly effecting by rain and haze attenuations. In addition, there are mention and description for atmospheric effects, FSO mesh network, modulation scheme, simulation, and the data security. From simulation results, the hybrid system using MD code produces reduced “bit-error rate (BER)" at heavy storm rain to distance or range of 500 m and at drizzle rain up to 2500 m range. And also investigates the performance of using the proposed system with radio over fiber (RoF) for UWB signals through indoor propagation in building applications of wireless channel

    Text Hiding in Coded Image Based on Quantization Level Modification and Chaotic Function

    Get PDF
    A text hiding method in codded image is presented in this paper that based on quantization level modification. The used image is transformed into wavelet domain by DWT and coefficient of transform is partitioned into predefined block size. Specific threshold has been used to classify these blocks into two types named smooth and complex. Each type has its own method of text hiding (binary data), for smooth blocks, secret bits which represent the text data are switched by the bitmap. In order to reduce distortion, the quantization levels are modified. To reach extra embedding payload the quantization level could carry extra two bits depending on other threshold. The complex block carry one data bit on each block and quantization levels are swapped to reduce distortion with bitmap flipping. The proposed method result shows a high signal to noise ratio, with studying capacity as important in this work

    The benefit of combining standard automated perimetry and multifocal visual evoked potential hemifield intersector analysis in suspecious glaucomatous visual field defects

    Get PDF
    Several analysis protocols have been tested to identify early visual field losses in glaucoma patients using the mfVEP technique, some were successful in detection of field defects, which were comparable to the standard SAP visual field assessment, and others were not very informative and needed more adjustment and research work. In this study we implemented a novel analysis approach and evaluated its validity and whether it could be used effectively for early detection of visual field defects in glaucoma. The purpose of this study is to examine the benefit of adding mfVEP hemifield Intersector analysis protocol to the standard HFA test when there is suspicious glaucomatous visual field loss. 3 groups were tested in this study; normal controls (38 eyes), glaucoma patients (36 eyes) and glaucoma suspect patients (38 eyes). All subjects had a two standard Humphrey visual field HFA test 24-2, optical coherence tomography of the optic nerve head, and a single mfVEP test undertaken in one session. Analysis of the mfVEP results was done using the new analysis protocol; the Hemifield Sector Analysis HSA protocol. The retinal nerve fibre (RNFL) thickness was recorded to identify subjects with suspicious RNFL loss. The hemifield Intersector analysis of mfVEP results showed that signal to noise ratio (SNR) difference between superior and inferior hemifields was statistically significant between the 3 groups (ANOVA p<0.001 with a 95% CI). The difference between superior and inferior hemispheres in all subjects were all statistically significant in the glaucoma patient group 11/11 sectors (t-test p<0.001), partially significant 5/11 in glaucoma suspect group (t-test p<0.01) and no statistical difference between most sectors in normal group (only 1/11 was significant) (t-test p<0.9). Sensitivity and specificity of the HSA protocol in detecting glaucoma was 97% and 86% respectively, while for glaucoma suspect were 89% and 79%. The use of SAP and mfVEP results in subjects with suspicious glaucomatous visual field defects, identified by low RNFL thickness, is beneficial in confirming early visual field defects. The new HSA protocol used in the mfVEP testing can be used to detect glaucomatous visual field defects in both glaucoma and glaucoma suspect patient. Using this protocol in addition to SAP analysis can provide information about focal visual field differences across the horizontal midline, and confirm suspicious field defects. Sensitivity and specificity of the mfVEP test showed very promising results and correlated with other anatomical changes in glaucoma field loss. The Intersector analysis protocol can detect early field changes not detected by standard HFA test

    The role of hemifield sector analysis in multifocal visual evoked potential objective perimetry in the early detection of glaucomatous visual field defects

    Get PDF
    Objective: The purpose of this study was to examine the effectiveness of a new analysis method of mfVEP objective perimetry in the early detection of glaucomatous visual field defects compared to the gold standard technique. Methods and patients: Three groups were tested in this study; normal controls (38 eyes), glaucoma patients (36 eyes), and glaucoma suspect patients (38 eyes). All subjects underwent two standard 24-2 visual field tests: one with the Humphrey Field Analyzer and a single mfVEP test in one session. Analysis of the mfVEP results was carried out using the new analysis protocol: the hemifield sector analysis protocol. Results: Analysis of the mfVEP showed that the signal to noise ratio (SNR) difference between superior and inferior hemifields was statistically significant between the three groups (analysis of variance, P<0.001 with a 95% confidence interval, 2.82, 2.89 for normal group; 2.25, 2.29 for glaucoma suspect group; 1.67, 1.73 for glaucoma group). The difference between superior and inferior hemifield sectors and hemi-rings was statistically significant in 11/11 pair of sectors and hemi-rings in the glaucoma patients group (t-test P<0.001), statistically significant in 5/11 pairs of sectors and hemi-rings in the glaucoma suspect group (t-test P<0.01), and only 1/11 pair was statistically significant (t-test P<0.9). The sensitivity and specificity of the hemifield sector analysis protocol in detecting glaucoma was 97% and 86% respectively and 89% and 79% in glaucoma suspects. These results showed that the new analysis protocol was able to confirm existing visual field defects detected by standard perimetry, was able to differentiate between the three study groups with a clear distinction between normal patients and those with suspected glaucoma, and was able to detect early visual field changes not detected by standard perimetry. In addition, the distinction between normal and glaucoma patients was especially clear and significant using this analysis. Conclusion: The new hemifield sector analysis protocol used in mfVEP testing can be used to detect glaucomatous visual field defects in both glaucoma and glaucoma suspect patients. Using this protocol, it can provide information about focal visual field differences across the horizontal midline, which can be utilized to differentiate between glaucoma and normal subjects. The sensitivity and specificity of the mfVEP test showed very promising results and correlated with other anatomical changes in glaucomatous visual field loss. The intersector analysis protocol can detect early field changes not detected by the standard Humphrey Field Analyzer test. © 2013 Mousa et al, publisher and licensee Dove Medical Press Ltd
    corecore