16 research outputs found

    Inter-cellular forces orchestrate contact inhibition of locomotion.

    Get PDF
    Contact inhibition of locomotion (CIL) is a multifaceted process that causes many cell types to repel each other upon collision. During development, this seemingly uncoordinated reaction is a critical driver of cellular dispersion within embryonic tissues. Here, we show that Drosophila hemocytes require a precisely orchestrated CIL response for their developmental dispersal. Hemocyte collision and subsequent repulsion involves a stereotyped sequence of kinematic stages that are modulated by global changes in cytoskeletal dynamics. Tracking actin retrograde flow within hemocytes in vivo reveals synchronous reorganization of colliding actin networks through engagement of an inter-cellular adhesion. This inter-cellular actin-clutch leads to a subsequent build-up in lamellar tension, triggering the development of a transient stress fiber, which orchestrates cellular repulsion. Our findings reveal that the physical coupling of the flowing actin networks during CIL acts as a mechanotransducer, allowing cells to haptically sense each other and coordinate their behaviors

    Strategies for improving patient recruitment to focus groups in primary care: a case study reflective paper using an analytical framework

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recruiting to primary care studies is complex. With the current drive to increase numbers of patients involved in primary care studies, we need to know more about successful recruitment approaches. There is limited evidence on recruitment to focus group studies, particularly when no natural grouping exists and where participants do not regularly meet. The aim of this paper is to reflect on recruitment to a focus group study comparing the methods used with existing evidence using a resource for research recruitment, PROSPeR (Planning Recruitment Options: Strategies for Primary Care).</p> <p>Methods</p> <p>The focus group formed part of modelling a complex intervention in primary care in the Resources for Effective Sleep Treatment (REST) study. Despite a considered approach at the design stage, there were a number of difficulties with recruitment. The recruitment strategy and subsequent revisions are detailed.</p> <p>Results</p> <p>The researchers' modifications to recruitment, justifications and evidence from the literature in support of them are presented. Contrary evidence is used to analyse why some aspects were unsuccessful and evidence is used to suggest improvements. Recruitment to focus group studies should be considered in two distinct phases; getting potential participants to contact the researcher, and converting those contacts into attendance. The difficulty of recruitment in primary care is underemphasised in the literature especially where people do not regularly come together, typified by this case study of patients with sleep problems.</p> <p>Conclusion</p> <p>We recommend training GPs and nurses to recruit patients during consultations. Multiple recruitment methods should be employed from the outset and the need to build topic related non-financial incentives into the group meeting should be considered. Recruitment should be monitored regularly with barriers addressed iteratively as a study progresses.</p

    Lamellipodin promotes invasive 3D cancer cell migration via regulated interactions with Ena/VASP and SCAR/WAVE

    Get PDF
    Cancer invasion is a hallmark of metastasis. The mesenchymal mode of cancer cell invasion is mediated by elongated membrane protrusions driven by the assembly of branched F-actin networks. How deregulation of actin regulators promotes cancer cell invasion is still enigmatic. We report that increased expression and membrane localization of the actin regulator Lamellipodin correlate with reduced metastasis-free survival and poor prognosis in breast cancer patients. In agreement, we find that Lamellipodin depletion reduced lung metastasis in an orthotopic mouse breast cancer model. Invasive 3D cancer cell migration as well as invadopodia formation and matrix degradation was impaired upon Lamellipodin depletion. Mechanistically, we show that Lamellipodin promotes invasive 3D cancer cell migration via both actin-elongating Ena/VASP proteins and the Scar/WAVE complex, which stimulates actin branching. In contrast, Lamellipodin interaction with Scar/WAVE but not with Ena/VASP is required for random 2D cell migration. We identified a phosphorylation-dependent mechanism that regulates selective recruitment of these effectors to Lamellipodin: Abl-mediated Lamellipodin phosphorylation promotes its association with both Scar/WAVE and Ena/VASP, whereas Src-dependent phosphorylation enhances binding to Scar/WAVE but not to Ena/VASP. Through these selective, regulated interactions Lamellipodin mediates directional sensing of epidermal growth factor (EGF) gradients and invasive 3D migration of breast cancer cells. Our findings imply that increased Lamellipodin levels enhance Ena/VASP and Scar/WAVE activities at the plasma membrane to promote 3D invasion and metastasis.Virginia and D.K. Ludwig Fund for Cancer Research (Postdoctoral fellowship)King's College London (Overseas Research PhD Studentship (KORS))National Cancer Institute (U.S.) (U54-CA112967)National Cancer Institute (U.S.) (U54-CA163109)Ludwig Center for Molecular Oncology at MITDavid H. Koch Institute for Integrative Cancer Research at MIT (Support Grant P30-CA14051)National Cancer Institute (U.S.) (Koch Institute Support Grant P30-CA14051)Biotechnology and Biological Sciences Research Council (Great Britain) (BB/F011431/1)Biotechnology and Biological Sciences Research Council (Great Britain) (BB/J000590/1)Biotechnology and Biological Sciences Research Council (Great Britain) (BB/N000226/1)Wellcome Trust (London, England) (082907/Z/07/Z
    corecore