172 research outputs found

    Layered Na0.71CoO2: a powerful candidate for viable and high performance Na-batteries

    Get PDF
    The present study reports on the synthesis and the electrochemical behavior of Na0.71CoO2, a promising candidate as cathode for Na-based batteries. The material was obtained in two different morphologies by a double-step route, which is cheap and easy to scale up: the hydrothermal synthesis to produce Co3O4 with tailored and nanometric morphology, followed by the solid-state reaction with NaOH, or alternatively with Na2CO3, to promote Na intercalation. Both products are highly crystalline and have the P2-Na0.71CoO2 crystal phase, but differ in the respective morphologies. The material obtained from Na2CO3 have a narrow particle length (edge to edge) distribution and 2D platelet morphology, while those from NaOH exhibit large microcrystals, irregular in shape, with broad particle length distribution and undefined exposed surfaces. Electrochemical analysis shows the good performances of these materials as a positive electrode for Na-ion half cells. In particular, Na0.71CoO2 thin microplatelets exhibit the best behavior with stable discharge specific capacities of 120 and 80 mAh g-1 at 5 and 40 mA g-1, respectively, in the range 2.0–3.9 V vs. Na+/Na. These outstanding properties make this material a promising candidate to construct viable and high-performance Na-based batteries

    Performance of Edmonton Frail Scale on frailty assessment: its association with multi-dimensional geriatric conditions assessed with specific screening tools.

    Get PDF
    BACKGROUND: The aim of this study was to evaluate the performance of Edmonton Frail Scale (EFS) on frailty assessment in association with multi-dimensional conditions assessed with specific screening tools and to explore the prevalence of frailty by gender. METHODS: We enrolled 366 hospitalised patients (women\men: 251\115), mean age 81.5 years. The EFS was given to the patients to evaluate their frailty. Then we collected data concerning cognitive status through Mini-Mental State Examination (MMSE), health status (evaluated with the number of diseases), functional independence (Barthel Index and Activities Daily Living; BI, ADL, IADL), use of drugs (counting of drugs taken every day), Mini Nutritional Assessment (MNA), Geriatric Depression Scale (GDS), Skeletal Muscle Index of sarcopenia (SMI), osteoporosis and functionality (Handgrip strength). RESULTS: According with the EFS, the 19.7% of subjects were classified as non frail, 66.4% as apparently vulnerable and 13.9% with severe frailty. The EFS scores were associated with cognition (MMSE: β = 0.980; p < 0.01), functional independence (ADL: β = -0.512; p < 0.00); (IADL: β = -0.338; p < 0.01); use of medications (β = 0.110; p < 0.01); nutrition (MNA: β = -0.413; p < 0.01); mood (GDS: β = -0.324; p < 0.01); functional performance (Handgrip: β = -0.114, p < 0.01) (BI: β = -0.037; p < 0.01), but not with number of comorbidities (β = 0.108; p = 0.052). In osteoporotic patients versus not-osteoporotic patients the mean EFS score did not differ between groups (women: p = 0.365; men: p = 0.088), whereas in Sarcopenic versus not-Sarcopenic patients, there was a significant differences in women: p < 0.05. CONCLUSIONS: This study suggests that measuring frailty with EFS is helpful and performance tool for stratifying the state of fragility in a group of institutionalized elderly. As matter of facts the EFS has been shown to be associated with several geriatric conditions such independence, drugs assumption, mood, mental, functional and nutritional status

    Inverted Opal Luminescent Ce-Doped Silica Glasses

    Get PDF
    Inverted opal Ce-doped silica glasses (Ce : Si molar ratio 1 ⋅ 10−3 were prepared by a sol-gel method using opals of latex microspheres as templates. The rare earth is homogeneously dispersed in silica host matrix, as evidenced by the absence of segregated CeO2, instead present in monolithic Ce-doped SG with the same cerium content. This suggests that the nanometric dimensions of bridges and junctions of the host matrix in the inverted opal structures favor the RE distribution avoiding the possible segregation of CeO2

    Aqueous extracts from dietary supplements influence the production of inflammatory cytokines in immortalized and primary T lymphocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Congaplex<sup>® </sup>and Immuplex<sup>® </sup>are dietary supplements that have been traditionally used to support immune system function. The purpose of these experiments was to determine whether Congaplex<sup>® </sup>and Immuplex<sup>® </sup>affect immune function using primary and immortalized T lymphocytes.</p> <p>Methods</p> <p>Immortalized CEM and Jurkat T lymphocytes and primary peripheral mononuclear blood cells (PBMCs) were treated with the aqueous extracts from Congaplex<sup>® </sup>and Immuplex<sup>® </sup>to determine the effects of these products on cytokine production in activated T lymphocytes.</p> <p>Results</p> <p>Congaplex<sup>® </sup>enhanced phytohemagglutinin/phorbol 12-myristate 13-acetate (PHA/PMA) stimulation of both CEM and Jurkat cells as measured by the production of cytokines, while Immuplex<sup>® </sup>suppressed PHA/PMA-induced production of cytokines, with the exception of interleukin (IL)-8 which was enhanced by Immuplex<sup>®</sup>. <it>In vitro </it>treatment of PBMCs from 10 healthy donors with Congaplex<sup>® </sup>or Immuplex<sup>® </sup>decreased PHA-stimulated production of interferon (IFN)-γ but increased the production of IL-13.</p> <p>Conclusions</p> <p>While the effects of Congaplex<sup>® </sup>and Immuplex<sup>® </sup>differed in these two models, these data demonstrate that the aqueous extracts from these two dietary supplements can affect the inflammatory response of T lymphocytes.</p

    Sol-gel derived mesoporous Pt and Cr-doped WO(3) thin films: the role played by mesoporosity and metal doping in enhancing the gas sensing properties

    Get PDF
    Mesoporous Cr or Pt-doped WO(3) thin films to be employed as ammonia gas sensors were prepared by a fast one-step sol-gel procedure, based on the use of triblock copolymer as templating agent. The obtained films were constituted by aggregates of interconnected WO(3) nanocrystals (20-50 nm) separated by mesopores with dimensions ranging between 2 and 15 nm. The doping metals, Pt and Cr, resulted differently hosted in the WO(3) mesoporous matrix. Chromium is homogeneously dispersed in the oxide matrix, mainly as Cr(III) and Cr(V) centers, as revealed by EPR spectroscopy; instead platinum segregated as Pt (0) nanoparticles (4 nm) mainly included inside the WO(3) nanocrystals. The semiconductor layers containing Pt nanoclusters revealed, upon exposure to NH(3), remarkable electrical responses, much higher than Cr-doped and undoped layers, particularly at low ammonia concentration (6.2 ppm). This behavior was attributed to the presence of Pt nanoparticles segregated inside the semiconductor matrix, which act as catalysts of the N-H bond cleavage, decreasing the activation barrier in the ammonia dissociation. The role of the mesoporous structure in influencing the chemisorption and the gas diffusion in the WO(3) matrix appeared less decisive than the electronic differences between the two examined doping metals. The overall results suggest that a careful combination between mesoporous architecture and metal doping can really promote the electrical response of WO(3) toward ammonia

    Green tea catechins in chemoprevention of cancer: A molecular docking investigation into their interaction with glutathione S-transferase (GST P1-1)

    Get PDF
    The anti- and pro-oxidant effects of green tea catechins have been implicated in the alterations of cellular functions determining their chemoprotective and therapeutic potentials in toxicity and diseases. The glutathione S-transferases (GSTs; EC 2.5.1.18) family is a widely distributed phase-II detoxifying enzymes and the GST P1-1 isoenzyme has been shown to catalyze the conjugation of GSH with some alkylating anti-cancer agents, suggesting that over-expression of GST P1-1 would result in tumor cell resistance. Here we report the docking study of four green tea catechins and four alkylating anticancer drugs into the GST P1-1 model, as GSTs were found to be affected by tea catechins. The EGCG ligands exhibit higher docking potential with respect to the anticancer agents, with a ligand-receptor interaction pattern indicating an high conformational stability. Consequently, the competition mechanisms favourable for the green tea catechins could lead to enzyme(s) desensitisation with a reduction of the alkylating drugs metabolism. The results provide a useful theoretical contribution in understanding the biochemical mechanisms implicated in the chemotherapeutic use of green tea catechins in oxidative stress-related diseases
    • …
    corecore