217 research outputs found

    Enzymatic Regulation of Protein-Protein Interactions in Artificial Cells

    Get PDF
    Membraneless organelles are important for spatial organization of proteins and regulation of intracellular processes. Proteins can be recruited to these condensates by specific protein–protein or protein–nucleic acid interactions, which are often regulated by post-translational modifications. However, the mechanisms behind these dynamic, affinity-based protein recruitment events are not well understood. Here, a coacervate system that incorporates the 14-3-3 scaffold protein to study enzymatically regulated recruitment of 14-3-3-binding proteins is presented, which mostly bind in a phosphorylation-dependent manner. Synthetic coacervates are efficiently loaded with 14-3-3, and phosphorylated binding partners, such as the c-Raf pS233/pS259 peptide (c-Raf), show 14-3-3-dependent sequestration with up to 161-fold increase in local concentration. The c-Raf domain is fused to green fluorescent protein (GFP-c-Raf) to demonstrate recruitment of proteins. In situ phosphorylation of GFP-c-Raf by a kinase leads to enzymatically regulated uptake. The introduction of a phosphatase into coacervates preloaded with the phosphorylated 14-3-3-GFP-c-Raf complex results in a significant cargo efflux mediated by dephosphorylation. Finally, the general applicability of this platform to study protein–protein interactions is demonstrated by the phosphorylation-dependent and 14-3-3-mediated active reconstitution of a split-luciferase inside artificial cells. This work presents an approach to study dynamically regulated protein recruitment in condensates, using native interaction domains.</p

    Macrocyclization of enzyme-based supramolecular polymers

    Get PDF
    AB type monomers for supramolecular polymers have been developed based on the strong and reversible noncovalent interaction between ribonuclease S-peptide (A) and S-protein (B), resulting in an active enzyme complex as the linking unit. Two AB-type protein constructs are synthesized differing in the length of the flexible oligo(ethylene glycol) spacer separating the two end groups. Using an experimental setup where size exclusion chromatography is directly coupled to Q-TOF mass spectrometry, we have analyzed the self-assembled architectures as a function of concentration. The theory of macrocyclization under thermodynamic control is used to quantitatively analyze the experimental data. Using this theory, we show that AB-type monomers linked by flexible linkers grow reversibly via ring-chain competition. Inherently the formation of linear polymeric assemblies is beyond the capability of these types of building blocks due to concentration limits of proteins. The results therefore contribute to the general understanding of supramolecular polymerization with biological building blocks and demonstrate design requirements for monomers if linear polymerization is desired

    Ranking of Fuzzy Similar Faces Using Relevance Matrix and Aggregation Operators

    Get PDF
    AbstractIn perception based imaging, Sketching With Words (SWW) is a well-established methodology in which the objects of computation are fuzzy geometric objects (f-objects).The problem of facial imaging of criminal on the basis of onlooker statement is not lack of method and measures but the modeling of onlooker(s) mind set. Because the onlooker has to give statements about different human face parts like forehead, eyes, nose, and chin etc.The concept of fuzzy similarity (f-similarity) and proper aggregation of components of face may provide more flexibility to onlooker(s). In proposed work onlooker(s) statement is recorded. Thereafter it is compared with existing statements. The f-similarity with different faces in database is estimated by using ‘as many as possible’ linguistic quantifier. Three types of constraints over size of parts of face ‘small’, ‘medium’, and ‘large’ are considered. Possibilistic constraints with linguistic hedges and negation operator like ‘very long’, ‘not long’, ‘not very long’ etc. are used. Moreover we have generated ranking of alike faces in decreasing order by using the concepts of f-similarity and relevance matrix

    Acute upper airway failure and mediastinal emphysema following a wire-guided percutaneous cricothyrotomy in a patient with severe maxillofacial trauma

    Get PDF
    Contains fulltext : 69538.pdf (publisher's version ) (Open Access)BACKGROUND: In the presence of severe maxillofacial trauma, management of the airway is important because this condition poses a significant threat to airway patency. That securing the airway is not always straightforward is described and illustrated in this paper. CASE: We present the case of a 23-year-old patient who sustained severe maxillofacial injury for which airway control was necessary. A wire-guided percutaneous dilation cricothyrotomy was performed, which was most probably the cause of an acute loss of airway patency. The literature regarding the role of percutaneous techniques in an elective and emergency setting is reviewed

    Population-based impact of COVID-19 on incidence, treatment, and survival of patients with pancreatic cancer

    Get PDF
    Background: The COVID-19 pandemic has put substantial strain on the healthcare system of which the effects are only partly elucidated. This study aimed to investigate the impact on pancreatic cancer care. Methods: All patients diagnosed with pancreatic cancer between 2017 and 2020 were selected from the Netherlands Cancer Registry. Patients diagnosed and/or treated in 2020 were compared to 2017–2019. Monthly incidence was calculated. Patient, tumor and treatment characteristics were analyzed and compared using Chi-squared tests. Survival data was analyzed using Kaplan–Meier and Log-rank tests. Results: In total, 11019 patients were assessed. The incidence in quarter (Q)2 of 2020 was comparable with that in Q2 of 2017–2019 (p = 0.804). However, the incidence increased in Q4 of 2020 (p = 0.031), mainly due to a higher incidence of metastatic disease (p = 0.010). Baseline characteristics, surgical resection (15% vs 16%; p = 0.466) and palliative systemic therapy rates (23% vs 24%; p = 0.183) were comparable. In 2020, more surgically treated patients received (neo)adjuvant treatment compared to 2017–2019 (73% vs 67%; p = 0.041). Median overall survival was comparable (3.8 vs 3.8 months; p = 0.065). Conclusion: This nationwide study found a minor impact of the COVID-19 pandemic on pancreatic cancer care and outcome. The Dutch health care system was apparently able to maintain essential care for patients with pancreatic cancer

    Resolving sepsis-induced immunoparalysis via trained immunity by targeting interleukin-4 to myeloid cells.

    Get PDF
    Immunoparalysis is a compensatory and persistent anti-inflammatory response to trauma, sepsis or another serious insult, which increases the risk of opportunistic infections, morbidity and mortality. Here, we show that in cultured primary human monocytes, interleukin-4 (IL4) inhibits acute inflammation, while simultaneously inducing a long-lasting innate immune memory named trained immunity. To take advantage of this paradoxical IL4 feature in vivo, we developed a fusion protein of apolipoprotein A1 (apoA1) and IL4, which integrates into a lipid nanoparticle. In mice and non-human primates, an intravenously injected apoA1-IL4-embedding nanoparticle targets myeloid-cell-rich haematopoietic organs, in particular, the spleen and bone marrow. We subsequently demonstrate that IL4 nanotherapy resolved immunoparalysis in mice with lipopolysaccharide-induced hyperinflammation, as well as in ex vivo human sepsis models and in experimental endotoxemia. Our findings support the translational development of nanoparticle formulations of apoA1-IL4 for the treatment of patients with sepsis at risk of immunoparalysis-induced complications.We thank M. Jaeger (Radboudumc) for kindly providing flourescein isothiocyanate-labelled Candida albicans. D. Williams (East Tennessee State University) provided the β-glucan we used in our initial experiments. H. Lemmers (Radboudumc) kindly prepared the purified lipopolysaccharide used for stimulation of primary human monocytes and macrophages. Part of the figures were prepared using (among other software) Biorender.com. B.N. is supported by a National Health and Medical Research Council (Australia) Investigator Grant (APP1173314). This work was supported by National Institutes of Health grants R01 HL144072, R01 CA220234 and P01 HL131478, as well as a Vici grant from the Dutch Research Council NWO and an ERC Advanced Grant (all to W.J.M.M.). M.G.N. was supported by a Spinoza grant from Dutch Research Council NWO and an ERC Advanced Grant (#833247).S

    Component Interactions and Electron Transfer in Toluene/o-Xylene Monooxygenase

    Get PDF
    The multicomponent protein toluene/o-xylene monooxygenase (ToMO) activates molecular oxygen to oxidize aromatic hydrocarbons. Prior to dioxygen activation, two electrons are injected into each of two diiron(III) units of the hydroxylase, a process that involves three redox active proteins: the ToMO hydroxylase (ToMOH), Rieske protein (ToMOC), and an NADH oxidoreductase (ToMOF). In addition to these three proteins, a small regulatory protein is essential for catalysis (ToMOD). Through steady state and pre-steady state kinetics studies, we show that ToMOD attenuates electron transfer from ToMOC to ToMOH in a concentration-dependent manner. At substoichiometric concentrations, ToMOD increases the rate of turnover, which we interpret to be a consequence of opening a pathway for oxygen transport to the catalytic diiron center in ToMOH. Excess ToMOD inhibits steady state catalysis in a manner that depends on ToMOC concentration. Through rapid kinetic assays, we demonstrate that ToMOD attenuates formation of the ToMOC–ToMOH complex. These data, coupled with protein docking studies, support a competitive model in which ToMOD and ToMOC compete for the same binding site on the hydroxylase. These results are discussed in the context of other studies of additional proteins in the superfamily of bacterial multicomponent monooxygenases.National Institute of General Medical Sciences (U.S.) (5-R01-GM032134)United States. National Institutes of Health (T32GM008334
    • …
    corecore