43 research outputs found

    Sucrose Monoester Micelles Size Determined by Fluorescence Correlation Spectroscopy (FCS)

    Get PDF
    One of the several uses of sucrose detergents, as well as other micelle forming detergents, is the solubilization of different membrane proteins. Accurate knowledge of the micelle properties, including size and shape, are needed to optimize the surfactant conditions for protein purification and membrane characterization. We synthesized sucrose esters having different numbers of methylene subunits on the substituent to correlate the number of methylene groups with the size of the corresponding micelles. We used Fluorescence Correlation Spectroscopy (FCS) and two photon excitation to determine the translational D of the micelles and calculate their corresponding hydrodynamic radius, Rh. As a fluorescent probe we used LAURDAN (6-dodecanoyl-2-dimethylaminonaphthalene), a dye highly fluorescent when integrated in the micelle and non-fluorescent in aqueous media. We found a linear correlation between the size of the tail and the hydrodynamic radius of the micelle for the series of detergents measured

    PyFrag 2019—Automating the exploration and analysis of reaction mechanisms

    No full text
    We present a substantial update to the PyFrag 2008 program, which was originally designed to perform a fragment-based activation strain analysis along a provided potential energy surface. The original PyFrag 2008 workflow facilitated the characterization of reaction mechanisms in terms of the intrinsic properties, such as strain and interaction, of the reactants. The new PyFrag 2019 program has automated and reduced the time-consuming and laborious task of setting up, running, analyzing, and visualizing computational data from reaction mechanism studies to a single job. PyFrag 2019 resolves three main challenges associated with the automated computational exploration of reaction mechanisms: it (1) computes the reaction path by carrying out multiple parallel calculations using initial coordinates provided by the user; (2) monitors the entire workflow process; and (3) tabulates and visualizes the final data in a clear way. The activation strain and canonical energy decomposition results that are generated relate the characteristics of the reaction profile in terms of intrinsic properties (strain, interaction, orbital overlaps, orbital energies, populations) of the reactant species

    What is the best anchoring group for a dye in a dye-sensitized solar cell?

    No full text
    We developed a computational procedure to screen many different anchoring groups used or usable to connect a dye to the semiconducting surface in a dye-sensitized solar cell. The procedure leads to a clear identification of the anchoring groups that bind strongly to the surface and facilitate the electron injection at the same time, providing clear-cut indications for the design of new dyes. The complicated interplay of factors that determine the final results (preferred adsorption mode, the anchor’s effect on the dye’s electronic structure, and dye–semiconductor coupling) is illustrated through a few examples showing how chemical intuition can often be misleading in this problem
    corecore