348 research outputs found

    Reassessing the temporal evolution of orchids with new fossils and a Bayesian relaxed clock, with implications for the diversification of the rare South American genus Hoffmannseggella (Orchidaceae: Epidendroideae)

    Get PDF
    BACKGROUND: The temporal origin and diversification of orchids (family Orchidaceae) has been subject to intense debate in the last decade. The description of the first reliable fossil in 2007 enabled a direct calibration of the orchid phylogeny, but little attention has been paid to the potential influence of dating methodology in obtaining reliable age estimates. Moreover, two new orchid fossils described in 2009 have not yet been incorporated in a molecular dating analysis. Here we compare the ages of major orchid clades estimated under two widely used methods, a Bayesian relaxed clock implemented in BEAST and Penalized Likelihood implemented in r8s. We then perform a new family-level analysis by integrating all 3 available fossils and using BEAST. To evaluate how the newly estimated ages may influence the evolutionary interpretation of a species-level phylogeny, we assess divergence times for the South American genus Hoffmannseggella (subfam. Epidendroideae), for which we present an almost complete phylogeny (40 out of 41 species sampled). RESULTS: Our results provide additional support that all extant orchids shared a most recent common ancestor in the Late Cretaceous (approximately 77 million years ago, Ma). However, we estimate the crown age of the five orchid subfamilies to be generally (approximately1-8 Ma) younger than previously calculated under the Penalized Likelihood algorithm and using a single internal fossil calibration. The crown age of Hoffmannseggella is estimated here at approximately 11 Ma, some 3 Ma more recently than estimated under Penalized Likelihood. CONCLUSIONS: Contrary to recent suggestions that orchid diversification began in a period of global warming, our results place the onset of diversification of the largest orchid subfamilies (Orchidoideae and Epidendroideae) in a period of global cooling subsequent to the Early Eocene Climatic Optimum. The diversification of Hoffmannseggella appears even more correlated to late Tertiary climatic fluctuations than previously suggested. With the incorporation of new fossils in the orchid phylogeny and the use of a method that is arguably more adequate given the present data, our results represent the most up-to-date estimate of divergence times in orchids

    Pre- and post-transplant minimal residual disease predicts relapse occurrence in children with acute lymphoblastic leukaemia

    Get PDF
    Relapse remains the leading cause of treatment failure in children with acute lymphoblastic leukaemia (ALL) undergoing allogeneic haematopoietic stem cell transplantation (HSCT). We retrospectively investigated the prognostic role of minimal residual disease (MRD) before and after HSCT in 119 children transplanted in complete remission (CR). MRD was measured by polymerase chain reaction in bone marrow samples collected pre-HSCT and during the first and third trimesters after HSCT (post-HSCT1 and post-HSCT3). The overall event-free survival (EFS) was 50%. The cumulative incidence of relapse and non-relapse mortality was 41% and 9%. Any degree of detectable pre-HSCT MRD was associated with poor outcome: EFS was 39% and 18% in patients with MRD positivity <1 × 10−3 and ≥1 × 10−3, respectively, versus 73% in MRD-negative patients (P < 0·001). This effect was maintained in different disease remissions, but low-level MRD had a very strong negative impact only in patients transplanted in second or further CR. Also, MRD after HSCT enabled patients to be stratified, with increasing MRD between post-HSCT1 and post-HSCT3 clearly defining cohorts with a different outcome. MRD is an important prognostic factor both before and after transplantation. Given that MRD persistence after HSCT is associated with dismal outcome, these patients could benefit from early discontinuation of immunosuppression, or pre-emptive immuno-therapy

    Photoluminescent properties of ZrO2: Tm3+, Tb3+, Eu3+ powdersd-A combined experimental and theoretical study

    Get PDF
    Rare-earth (RE) element-based materials for optical applications have received increasing attention owing to the emission properties of RE ions, which render these materials suitable for use in color displays, lasers, and solid-state lighting. In the present work, ZrO2:RE (RE = Tm3+, Tb3+, and Eu3+) powders were obtained via complex polymerization, and characterized by means of X-ray diffraction (XRD), Raman spectroscopy, UV–visible absorption spectroscopy, and photoluminescence measurements. The XRD patterns and Raman spectra revealed the tetragonal phase of ZrO2 co-doped with up to 4 mol.% RE3+ and stabilization of the cubic phase, for up to 8 mol.% RE3+. In addition, the photoluminescence measurements revealed simultaneous emissions in the blue (477 nm), green (496.02 nm and 548.32 nm), and red-orange (597.16 nm and 617.54 nm) regions. These emissions result from the Tm3+, Tb 3+, and Eu3+ ions, respectively. Energy transfers, such as 1G4 levels (Tm3+) → 5D4 (Tb3+) and 5D4 levels (Tb3+) → 5D0 (Eu3+), occurred during the emission process. Calculations based on density functional theory (DFT) were performed, to complement the experimental data. The results revealed that structural order/disorder effects were generated in the cubic and tetragonal ZrO2 phases in the ZrO2:Eu3+ powders, and changes in the electronic structure were manifested as a decrease in the band gap values. The chromaticity coordinates of all the samples were determined from the PL spectrum. The coordinates, x = 0.34 and y = 0.34, of the ZrO2:8%RE sample corresponded to a point located in the white region of the CIE diagram and color correlated temperature (CCT) was found to be 5181 K. More importantly, the present results indicate that ZrO2:RE powders constitute promising photoluminescent materials for use in new lighting devices.The authors gratefully acknowledge the financial support of the Brazilian governmental research funding agencies CAPES, CNPq 402127/2013-7, FAPESP2013/07296-2 and INCTMN2008/57872-1

    Understanding the White-Emitting CaMoO4 Co-Doped Eu3+, Tb3+, and Tm3+ Phosphor through Experiment and Computation

    Get PDF
    In this article, the synthesis by means of the spray pyrolysis method, of the CaMoO4 and rare-earth cation (RE3+)-doped CaMoO4:xRE3+ (RE3+ = Eu3+, Tb3+, and Tm3+; and x = 1, 2, and 4% mol) compounds, is presented. The as-synthesized samples were characterized using X-ray diffraction, Rietveld refinement, field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and photoluminescence (PL) spectroscopy. To complement and rationalize the experimental results, first-principles calculations, at the density functional theory level, have been performed to analyze the band structure and density of states. In addition, a theoretical method based on the calculations of surface energies and Wulff construction was applied to obtain the morphology transformation of the CaMoO4 and CaMoO4:RE3+ microstructures. The experimental morphologies can be observed in the FE-SEM images. The PL behavior of the Co-doped samples exhibited well-defined bands in the visible region. The samples with 2 and 4% of RE3+ released white emission according to the chromaticity coordinates (0.34, 0.34) and (0.34, 0.33), respectively. The present results provide not only a deep understanding of the structure–property relationships of CaMoO4-based phosphor but also can be employed as a guideline for the design of the electronic structure of the materials and the fabrication of photofunctional materials with optimal properties, which allows for the modeling of new phosphors for applications in solid-state lighting

    Binding Energy of Charged Excitons in ZnSe-based Quantum Wells

    Full text link
    Excitons and charged excitons (trions) are investigated in ZnSe-based quantum well structures with (Zn,Be,Mg)Se and (Zn,Mg)(S,Se) barriers by means of magneto-optical spectroscopy. Binding energies of negatively () and positively (X+) charged excitons are measured as functions of quantum well width, free carrier density and in external magnetic fields up to 47 T. The binding energy of shows a strong increase from 1.4 to 8.9 meV with decreasing quantum well width from 190 to 29 A. The binding energies of X+ are about 25% smaller than the binding energy in the same structures. The magnetic field behavior of and X+ binding energies differ qualitatively. With growing magnetic field strength, increases its binding energy by 35-150%, while for X+ it decreases by 25%. Zeeman spin splittings and oscillator strengths of excitons and trions are measured and discussed

    External validation suggests Integrin beta 3 as prognostic biomarker in serous ovarian adenocarcinomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The majority of women with ovarian cancer are diagnosed in late stages, and the mortality rate is high. The use of biomarkers as prognostic factors may improve the treatment and clinical outcome of these patients. We performed an external validation of the potential biomarkers CLU, ITGB3, CAPG, and PRAME to determine if the expression levels are relevant to use as prognostic factors.</p> <p>Methods</p> <p>We analysed the gene expression of CLU, ITGB3, CAPG, and PRAME in 30 advanced staged serous adenocarcinomas with quantitative real-time polymerase chain reaction (QPCR) and the protein levels were analysed in 98 serous adenocarcinomas with western blot for semiquantitative analysis. Statistical differences in mRNA and protein expressions between tumours from survivors and tumours from deceased patients were evaluated using the Mann-Whitney U test.</p> <p>Results</p> <p>The gene and protein ITGB3 (Integrin beta 3) were significantly more expressed in tumours from survivors compared to tumours from deceased patients, which is in concordance with our previous results. However, no significant differences were detected for the other three genes or proteins CLU, CAPG, and PRAME.</p> <p>Conclusion</p> <p>The loss of ITGB3 expression in tumours from deceased patients and high expression in tumours from survivors could be used as a biomarker for patients with advanced serous tumours.</p

    A Guide to Carrying Out a Phylogenomic Target Sequence Capture Project

    Get PDF
    High-throughput DNA sequencing techniques enable time- and cost-effective sequencing of large portions of the genome. Instead of sequencing and annotating whole genomes, many phylogenetic studies focus sequencing effort on large sets of pre-selected loci, which further reduces costs and bioinformatic challenges while increasing coverage. One common approach that enriches loci before sequencing is often referred to as target sequence capture. This technique has been shown to be applicable to phylogenetic studies of greatly varying evolutionary depth. Moreover, it has proven to produce powerful, large multi-locus DNA sequence datasets suitable for phylogenetic analyses. However, target capture requires careful considerations, which may greatly affect the success of experiments. Here we provide a simple flowchart for designing phylogenomic target capture experiments. We discuss necessary decisions from the identification of target loci to the final bioinformatic processing of sequence data. We outline challenges and solutions related to the taxonomic scope, sample quality, and available genomic resources of target capture projects. We hope this review will serve as a useful roadmap for designing and carrying out successful phylogenetic target capture studies. © Copyright © 2020 Andermann, Torres Jiménez, Matos-Maraví, Batista, Blanco-Pastor, Gustafsson, Kistler, Liberal, Oxelman, Bacon and Antonelli

    A Guide to Carrying Out a Phylogenomic Target Sequence Capture Project

    Get PDF
    High-throughput DNA sequencing techniques enable time- and cost-effective sequencing of large portions of the genome. Instead of sequencing and annotating whole genomes, many phylogenetic studies focus sequencing effort on large sets of pre-selected loci, which further reduces costs and bioinformatic challenges while increasing coverage. One common approach that enriches loci before sequencing is often referred to as target sequence capture. This technique has been shown to be applicable to phylogenetic studies of greatly varying evolutionary depth. Moreover, it has proven to produce powerful, large multi-locus DNA sequence datasets suitable for phylogenetic analyses. However, target capture requires careful considerations, which may greatly affect the success of experiments. Here we provide a simple flowchart for designing phylogenomic target capture experiments. We discuss necessary decisions from the identification of target loci to the final bioinformatic processing of sequence data. We outline challenges and solutions related to the taxonomic scope, sample quality, and available genomic resources of target capture projects. We hope this review will serve as a useful roadmap for designing and carrying out successful phylogenetic target capture studies. © Copyright © 2020 Andermann, Torres Jiménez, Matos-Maraví, Batista, Blanco-Pastor, Gustafsson, Kistler, Liberal, Oxelman, Bacon and Antonelli

    A Guide to Carrying Out a Phylogenomic Target Sequence Capture Project

    Get PDF
    High-throughput DNA sequencing techniques enable time- and cost-effective sequencing of large portions of the genome. Instead of sequencing and annotating whole genomes, many phylogenetic studies focus sequencing effort on large sets of pre-selected loci, which further reduces costs and bioinformatic challenges while increasing coverage. One common approach that enriches loci before sequencing is often referred to as target sequence capture. This technique has been shown to be applicable to phylogenetic studies of greatly varying evolutionary depth. Moreover, it has proven to produce powerful, large multi-locus DNA sequence datasets suitable for phylogenetic analyses. However, target capture requires careful considerations, which may greatly affect the success of experiments. Here we provide a simple flowchart for designing phylogenomic target capture experiments. We discuss necessary decisions from the identification of target loci to the final bioinformatic processing of sequence data. We outline challenges and solutions related to the taxonomic scope, sample quality, and available genomic resources of target capture projects. We hope this review will serve as a useful roadmap for designing and carrying out successful phylogenetic target capture studies. © Copyright © 2020 Andermann, Torres Jiménez, Matos-Maraví, Batista, Blanco-Pastor, Gustafsson, Kistler, Liberal, Oxelman, Bacon and Antonelli
    corecore