10,943 research outputs found
Residual Stresses in Layered Manufacturing
Layered Manufacturing processes accumulate residual stresses during materialbuildup. These stresses may cause part warping and layer delamination. This paper presents
work done on investigating residual stress accumulation andp(i,rt distortion of Layered
Manufactured artifacts. A simple analyticaLmodel was developed and used to determine how the number of layers and the layer thickness influences part warping. Resllits
show that thin layers produce lower part deflection as compared with depositing fewer
and thicker layers. In addition to the analytical work, a finite element model wasdeveloped and used to illvestigate the deposition pattern's influence on. the part deflection.
Finite element model and corresponding experimental analysis showed that the geometry of the deposition pattern significantly affects the resulting part distortion. This
finite element model was also used to investigate an inter-layer surface defect,. known
as the Christmas Thee Step, that is associated with Shape Deposition Manufacturing.
Results indicate that the features of this defect are influenced only by the material
deposited close. to the part·surface and the particular material deposited. The step is
not affected by the deposition pattern.Mechanical Engineerin
Gamma Ray Bursts with peculiar temporal asymmetry
Based on the study of temporal asymmetry of 631 gamma ray bursts from the
BATSE 3B catalog by Link and Epstein [Ap J 466, 764 (1996)], we identify the
population of bursts whose rising times are longer than their decays, thus
showing atypical profiles. We analyse their sky distribution, morphology,
time-space clustering and other average properties and compare them with those
associated with the bulk of the bursts. We show how most of the peculiar bursts
analysed are consistent with recent fireball models, but a fraction of bursts
(% of the total sample) appear to be inconsistent.Comment: mn style (included in the submission), 4 figures that must be printed
separately. Submitted to Monthly Notices of RA
Tkachenko waves, glitches and precession in neutron star
Here I discuss possible relations between free precession of neutron stars,
Tkachenko waves inside them and glitches. I note that the proposed precession
period of the isolated neutron star RX J0720.4-3125 (Haberl et al. 2006) is
consistent with the period of Tkachenko waves for the spin period 8.4s. Based
on a possible observation of a glitch in RX J0720.4-3125 (van Kerkwijk et al.
2007), I propose a simple model, in which long period precession is powered by
Tkachenko waves generated by a glitch. The period of free precession,
determined by a NS oblateness, should be equal to the standing Tkachenko wave
period for effective energy transfer from the standing wave to the precession
motion. A similar scenario can be applicable also in the case of the PSR
B1828-11.Comment: 6 pages, no figures, accepted to Ap&S
Antiferroquadrupolar Order in the Magnetic Semiconductor TmTe
The physical properties of the antiferroquadrupolar state occurring in TmTe
below TQ=1.8 K have been studied using neutron diffraction in applied magnetic
fields. A field-induced antiferromagnetic component k = (1/2,1/2,1/2) is
observed and, from its magnitude and direction for different orientations of H,
an O(2,2) quadrupole order parameter is inferred. Measurements below TN ~= 0.5
K reveal that the magnetic structure is canted, in agreement with theoretical
predictions for in-plane antiferromagnetism. Complex domain repopulation
effects occur when the field is increased in the ordered phases, with
discontinuities in the superstructure peak intensities above 4 T.Comment: 6 pages, 6 figures, Presented at the International Conference on
Strongly Correlated Electrons with Orbital Degrees of Freedom (ORBITAL 2001),
September 11-14, 2001 (Sendai, JAPAN). To appear in: Journal of the Physical
Society of Japan (2002
The Two-Dimensional Square-Lattice S=1/2 Antiferromagnet Cu(pz)(ClO)
We present an experimental study of the two-dimensional S=1/2 square-lattice
antiferromagnet Cu(pz)(ClO) (pz denotes pyrazine - )
using specific heat measurements, neutron diffraction and cold-neutron
spectroscopy. The magnetic field dependence of the magnetic ordering
temperature was determined from specific heat measurements for fields
perpendicular and parallel to the square-lattice planes, showing identical
field-temperature phase diagrams. This suggest that spin anisotropies in
Cu(pz)(ClO) are small. The ordered antiferromagnetic structure is a
collinear arrangement with the magnetic moments along either the
crystallographic b- or c-axis. The estimated ordered magnetic moment at zero
field is m_0=0.47(5)mu_B and thus much smaller than the available single-ion
magnetic moment. This is evidence for strong quantum fluctuations in the
ordered magnetic phase of Cu(pz)(ClO). Magnetic fields applied
perpendicular to the square-lattice planes lead to an increase of the
antiferromagnetically ordered moment to m_0=0.93(5)mu_B at mu_0H=13.5T -
evidence that magnetic fields quench quantum fluctuations. Neutron spectroscopy
reveals the presence of a gapped spin excitations at the antiferromagnetic zone
center, and it can be explained with a slightly anisotropic nearest neighbor
exchange coupling described by J_1^{xy}=1.563(13)meV and
J_1^z=0.9979(2)J_1^{xy}
Tracking primary thermalization events in graphene with photoemission at extreme timescales
Direct and inverse Auger scattering are amongst the primary processes that
mediate the thermalization of hot carriers in semiconductors. These two
processes involve the annihilation or generation of an electron-hole pair by
exchanging energy with a third carrier, which is either accelerated or
decelerated. Inverse Auger scattering is generally suppressed, as the
decelerated carriers must have excess energies higher than the band gap itself.
In graphene, which is gapless, inverse Auger scattering is instead predicted to
be dominant at the earliest time delays. Here, femtosecond
extreme-ultraviolet pulses are used to detect this imbalance, tracking both the
number of excited electrons and their kinetic energy with time- and
angle-resolved photoemission spectroscopy. Over a time window of approximately
25 fs after absorption of the pump pulse, we observe an increase in conduction
band carrier density and a simultaneous decrease of the average carrier kinetic
energy, revealing that relaxation is in fact dominated by inverse Auger
scattering. Measurements of carrier scattering at extreme timescales by
photoemission will serve as a guide to ultrafast control of electronic
properties in solids for PetaHertz electronics.Comment: 16 pages, 8 figure
Analysis, design, and test of acoustic treatment in a laboratory inlet duct
A suppression prediction program based on the method of modal analysis for spinning mode propagation in a circular duct was used in the analytical design of optimized, multielement, Kevlar bulk-absorber treatment configurations for an inlet duct. The NASA-Langley ANRL anechoic chamber using the spinning mode synthesizer as a sound source was used to obtain in-duct spinning mode measurements, radial mode measurements, and far-field traverses, as well as aerodynamic measurements. The measured suppression values were compared to predicted values, using the in-duct, forward-traveling, radial-mode content as the source for the prediction. The performance of the treatment panels was evaluated from the predicted and measured data. Although experimental difficulties were encountered at the design condition, sufficient information was obtained to confirm the expectation that it is the panel impedance components which are critical to suppression at a single frequency, not the particular construction materials. The agreement obtained between measurement and prediction indicates that the analytical program can be used as an accurate, reliable, and useful design tool
Medium-Energy Gamma-Ray Astrophysics with the 3-DTI Gamma-Ray Telescope
Gamma-ray observations in the medium energy range (0.50-50.0 MeV) are central to unfolding many outstanding questions in astrophysics. The challenges of medium-energy gamma-ray observations, however, are the low photon statistics and large backgrounds. We review these questions, address the telescope technology requirements, and describe our development of the 3-Dimensional Track Imaging (3-DTI) Compton telescope and its performance for a new mediumenergy gamma-ray mission. The 3-DTI is a large-volume time projection chamber (TPC) with a 2-dimensional gas micro-well detector (MWD) readout
The Crustal Rigidity of a Neutron Star, and Implications for PSR 1828-11 and other Precession Candidates
We calculate the crustal rigidity parameter, b, of a neutron star (NS), and
show that b is a factor 40 smaller than the standard estimate due to Baym &
Pines (1971). For a NS with a relaxed crust, the NS's free-precession frequency
is directly proportional to b. We apply our result for b to PSR 1828-11, a 2.5
Hz pulsar that appears to be precessing with period 511 d. Assuming this 511-d
period is set by crustal rigidity, we show that this NS's crust is not relaxed,
and that its reference spin (roughly, the spin for which the crust is most
relaxed) is 40 Hz, and that the average spindown strain in the crust is 5
\times 10^{-5}. We also briefly describe the implications of our b calculation
for other well-known precession candidates.Comment: 44 pages, 10 figures, submitted to Ap
- …
